Американская исследовательская станция InSight приземлилась на Марс 27 ноября 2018 года. В декабре аппарат установил на поверхности планеты свой сверхчувствительный сейсмометр SEIS, один из основных научных приборов всей миссии. SEIS был разработан Французским космическим агентством (CNES).

Чувствительность прибора SEIS в тысячи раз превышает чувствительность сейсмометров, которые были установлены на посадочных станциях «Викинг». Он способен заметить тектоническую активность в любой точке планеты. По длине сейсмических волн и скорости их распространения ученые получат представления о внутреннем устройстве Марса. Кроме того, изучение современной сейсмической активности Марса должно пролить свет на геологическую историю планеты.

Для защиты сейсмометра от воздействия ветра и температурных колебаний используется специальный купол обтекаемой формы. Его нижняя часть представляет собой кольчужную юбку, состоящую из небольших термозащитных сегментов. Защитить SEIS от перепадов температуры даже более важно, чем от ветра, т. к. при изменении температуры металлические детали прибора расширяются и сжимаются. В районе посадки InSight суточные перепады температуры составляют 94 градуса, и с этим связаны основные опасения ученых. На Земле сейсмометры погружают под землю, чтобы минимизировать воздействие температуры. Станция InSight этого сделать не может. Поэтому прибор заключен в герметичную титановую сферу, а сфера помещена в изолированный шестиугольный контейнер с сотовыми стенками.

Все эти методы защиты не полностью исключат влияние температуры на сейсмометр. Для того, чтобы отфильтровывать оставшиеся колебания ученые, используют информацию с погодных датчиков.

К настоящему времени SEIS зафиксировал несколько толчков, но сейсмическая природа подтверждена только для одного из них, который произошел 6 апреля. Пока что ученые не знают, что вызвало этот толчок, и он слишком слаб, чтобы дать какую-то информацию о внутреннем строении Марса. Еще три более слабых толчка были зафиксированы 14 марта, 10 и 11 апреля. Они могут иметь экзогенное происхождение (т. е. вызваны с природными явлениями на поверхности и в атмосфере), но для двух из них ученые уже исключили влияние ветра.

Тем не менее, уже можно утверждать, что SEIS впервые в истории зафиксировал землетрясение на Марсе. В отличие от Земли, на этой планете нет тектонических плит, а потому землетрясения не связаны с их движением. Они имеют иной механизм образования: вследствие охлаждения кора Марса сжимается. Этот процесс сопровождается растрескиванием, что и вызывает небольшие тектонические колебания.

Ссылка: presse.cnes.fr

Обсудить

Около 10 лет назад Илон Маск сказал, что хочет осуществить высадку человека на Марс через 10 лет. Тогда его слова не имели большого веса. К 2019 году, хотя Марс и не стал ближе для человека, SpaceX продемонстрировала впечатляющие достижения и стала одной из ведущих космических компаний мира. Сейчас Илон Маск разрабатывает сверхтяжелую многоразовую ракету для полетов в дальний космос, и его обещания на следующие 10 лет воспринимаются совсем иначе. Первый полет система Super Heavy/Starship должен осуществить через несколько лет, а потом она должна будет летать на орбиту Луны, на ее поверхность и на Марс.

SpaceX – не единственный пример такого рода. Насколько частных фирм в США и Японии обещают запускать автоматические посадочные платформы на Луну чуть ли не ежегодно начиная со следующего года. НАСА смотрит на это благосклонно и даже обещает отправлять свою полезную нагрузку с этими миссиями, однако в свою основную программу их не включает.

Программа космических агентств сильно отличается от того, что делает SpaceX. В 2011 году НАСА объявило своей целью полет на Марс безо всяких заявок на колонизацию, но эта экспедиция должна была состояться только в середине 2030-х годов. В 2019 году Марс в планах космического агентства все так же находится за горизонтом в четверть века, и даже Луна не стала заметно ближе. Обладая намного бОльшими ресурсами, чем SpaceX, НАСА планирует высадку на Луну позднее, чем частная компания. Причем высадка в планах НАСА напоминает экспедиции прошлого века: на Луну должны отправиться два человека в тесном спускаемом модуле. А вот посадка на Луну корабля Starship от SpaceX больше напоминает фантастические фильмы.

Официально НАСА никак не поддерживает SpaceX в их лунно-марсианском проекте, но и не выступает против, и не объявляет его невозможным. При этом, между частной и государственной программами существует очевидная коллизия: если планы SpaceX осуществятся, то само существование НАСА и остальных государственных агентств потеряет всякий смысл, как и многомиллиардные расходы на их бессмысленные программы.

Разница в обещаниях и скорости работы SpaceX и НАСА исходит из разности подходов. Государственные агентства ставят на первое место надежность, принося ей в жертву огромные финансы и затрачивая лишние годы. Когда-то агентства работали иначе. В 1970-х годах первая станция «Салют» была построена за один год, а в 1960-х США потребовалось всего восемь лет, чтобы высадиться на Луну. Теперь это невозможно, ведь любая авария, даже без жертв, может поставить под угрозу всю программу.

SpaceX работает иначе. Она готова рисковать ради экономии и ради осуществления своих планов в кратчайшие сроки. Когда компания работает в союзе с НАСА, возникают проблемы. По большому счету, астронавта можно было запихать в любой грузовой корабль Dragon, доставляющий грузы на МКС с 2012 года. И астронавт бы выжил, и вернулся бы на Землю без особых проблем. В другом мире и в другое время SpaceX могла бы это сделать. Но в нашем мире – нет. Первый пилотируемый корабль Dragon должен был полететь в 2015 году, но он не полетел до сих пор из-за требований НАСА к безопасности. Без этих требований, в альтернативной реальности, уже летающий в 2019 году корабль Dragon 2 попал бы в аварию, как это произошло в прошлую субботу в ходе испытаний двигателей системы аварийного спасения. В нашей реальности гибель астронавтов спровоцировала бы кризис всей программы коммерческой транспортировки на МКС. В альтернативном мире SpaceX бы продолжила полеты с другими астронавтами (благо, их хватает), параллельно совершенствуя корабль и делая его более безопасным.

Стратегия «риска» – вполне работоспособная. Она позволяет добиваться результатов быстро. Но SpaceX не обладает достаточным капиталом, чтобы самостоятельно разработать и построить Super Heavy и Starship, а любое вовлечение НАСА будет налагать ограничения на допустимый риск.

С началом эксплуатации пилотируемых кораблей Dragon 2 доходы SpaceX должны заметно вырасти, но процесс разработки корабля постоянно растягивается, и недавняя авария сдвигает сертификацию корабля как минимум на вторую половину следующего года. Таким образом, скорость разработки Starship долгое время будет ограничена годовой прибылью SpaceX. Да и техническую сложность этого проекта не стоит недооценивать.

С поправкой на излишний оптимизм Илона Маска В отношении сроков, планы SpaceX не являются фантастикой. Но, увы, к реалиям нашего мира намного ближе медленная и примитивная программа НАСА.

Космическая лента

Обсудить

В субботу 20 апреля во Флориде во время испытаний пилотируемого корабля Dragon компании SpaceX произошла авария. Это событие может иметь крайне негативные последствия для графика разработки и сертификации нового корабля.

SpaceX разрабатывает для НАСА пилотируемый корабль в соответствии с контрактом, который был заключен в сентябре 2014 года. в рамках программы создания коммерческих пилотируемых кораблей CCtCap. Контракт предусматривает осуществление двух полетов, беспилотного и пилотируемого, а также требует провести испытания системы аварийного спасения корабля. После этого он пройдет сертификацию и будет использоваться для ротации экипажей Международной космической станции. На аналогичных условиях разрабатывается корабль Starliner компании Boeing.

Беспилотный полет корабля Dragon (DM-1, Demo Mission 1) состоялся в начале марта. Ракета Falcon 9 c кораблем Dragon стартовала 2 марта с площадки №39А Космического центра им. Кеннеди на мысе Канаверал. Корабль произвел стыковку с МКС на следующий день, и 8 марта он вернулся на Землю, совершив посадку в Атлантическом океане.

Предполагалось, что корабль из миссии DM-1 не полетит снова в космос. SpaceX планировала использовать его для испытаний системы аварийного спасения в полете (In-Slight Abort Test), а затем утилизировать или отправить в музей.


Камера сгорания SuperDraco напечатана на 3D-принтере

Испытания САС в полете – обязательный для сертификации корабля этап. В ходе этого теста корабль должен стартовать на ракете Falcon 9, которая на этапе максимального аэродинамического сопротивления подаст сигнал аварии. При получении сигнала корабль должен отделиться от ракеты и задействовать свою систему аварийного спасения для быстрого ухода от «готового взорваться» носителя.

Классическая система аварийного спасения представляет собой отделяемую башню с твердотопливными двигателями (см. корабли «Союз» или американский «Орион»). Но корабли Starliner и Dragon выводятся в потоке без головного обтекателя, а потому будут использовать для спасения собственные двигатели. На Dragon эту роль будут выполнять восемь двигателей SuperDraco, собранные в четыре кластера по два двигателя. Изначальный проект предполагал, что SuperDraco будут полностью универсальными, т. е. на них будут также возложены задачи по орбитальному маневрированию и по торможению при посадке. Но в ходе разработки корабля SpaceX была вынуждена отказаться от реактивной посадки. В финальной версии Dragon мощные SuperDraco используются только для системы аварийного спасения, тогда как орбитальные маневры выполняются хорошо отработанными на грузовых кораблях двигателями Draco, а для посадки используется система парашютов.

Тест системы аварийного спасения был запланирован на середину июля. Как раз в рамках подготовки к этому тесту и проводились испытания двигательной системы корабля Dragon 20 апреля. Тест проводился на специально построенном стенде во Флориде вблизи посадочной площадки №1 для первых ступеней Falcon 9 (Landing Zone 1). Утром были проведены статические огневые испытания двигателей Draco. Они прошли полностью успешно. Но около полудня по местному времени в ходе огневых испытаний SuperDraco (вероятно – при зажигании) произошел взрыв. В результате корабль Dragon был фактически уничтожен (видео).

Последствия аварии могут быть тяжелыми. Во-первых, SpaceX потеряла аппарат, предназначенный для испытаний САС. Для этого теста придется с нуля построить еще один корабль. Во-вторых, если расследование покажет, что авария произошла из-за двигателей, то в их конструкцию придется вносить изменения, и сертификация всей системы аварийного спасения затянется на долгий срок.

Boeing также испытывает затруднения, связанные с системой аварийного спасения своего корабля. Пока первый пилотируемый полет корабля Starliner официально запланирован на ноябрь этого года, но никто не удивится, если график в очередной раз пересмотрят.

В феврале 2019 года НАСА сообщило, что планирует закупить два дополнительных места на кораблях «Союз-МС». Сейчас российские корабли летают с одним свободным местом, поскольку Роскосмос ради экономии сократил программу работы на МКС, а вместе с ней и экипаж станции, до запуска многофункционального модуля «Наука».

На изображении ниже: маленькие двигатели Draco и большие SuperDraco.

Ссылка: nasaspaceflight.com

Обсудить

15 апреля в журнале Nature Astronomy была опубликована статья о гидросфере Титана, основанная на данных миссии «Кассини» (Cassini). Этот американский космический аппарат завершил свою работу в сентябре 2017 года, но собранные им данные все еще анализируются учеными.

На Титане происходит обмен жидкостью между поверхностью и атмосферой, аналогичный круговороту воды на Земле. Роль воды на спутнике Сатурна выполняют углеводороды, в основном – метан и этан. Известно, что основным компонентом крупных «морей» в северном полушарии Титана является метан. В южном полушарии ситуация иная: единственное крупное озеро там состоит наполовину из метана и наполовину из более тяжелого этана.

Как показывает новое исследование, малые озера в северном полушарии заполнены в основном метаном. При этом крупные моря сосредоточены в восточной части северного полушария, а в его западной части находятся высокогорные плато и холмы. Радарные данные с «Кассини» свидетельствуют о том, что небольшие по размерам озера на этих холмах в западном полушарии (их диаметр в среднем составляет десятки километров) могут иметь весьма внушительную глубину, которая порой превышает 100 м.

Планетологи предполагают, что механизм формирования этих озер похож на процесс карстообразования на Земле. Карстовые полости образуются при растворении горных пород – чаще всего это известняк – подземными или поверхностными водами. На Титане растворяться может водяной лед и твердые органические породы.

Еще одна статься в Nature Astronomy посвящена изучению «пересыхающих» озер. Для них радарная и инфракрасная съемка, проведенная в разное время, показывает различную глубину. Ученые считают, что им удалось наблюдать сезонные колебания, связанные с испарением жидкости. Это предположение согласуется с гипотезой о взаимодействии атмосферы и гидросферы Титана: во время дождливых периодов углеводороды выпадают на землю в виде жидких осадков и наполняют моря, а в засушливые периоды они испаряются и снова скапливаются в атмосфере.

Обе статьи основаны на данных, собранных «Кассини» во время последнего близкого пролета у Титана 22 апреля 2017 года.

Ссылка: nasa.gov

Обсудить

26 марта Белый дом выдвинул НАСА требование высадить американцев на Луне к 2024 году. После этого американское космическое агентство начало экстренно пересматривать свои планы. Какие-то пилотируемые проекты потребуют ускорения и дополнительных вливаний средств, а какие-то придется упростить. Ожидается, что в новой версии бюджетного запроса финансирование НАСА уже с 2020 года вырастет на $3-5 млрд.

На 35 Космическом симпозиуме глава НАСА Джим Брайденстайн объявил, что агентство разделит свою стратегию на две фазы: целью первой фазы станет максимально ускоренная высадка на Луне, а на второй фазе НАСА придаст лунной программе «устойчивый» характер.

Свою архитектуру для программы высадки на Луну 10 апреля представила компания Lockheed Martin. В представлении специалистов компании, как и раньше, для этого будут использованы сверхтяжелая ракета SLS и корабль Orion. Также придется разработать двухмодульный лунный посадочный аппарат.

Согласно стратегии Lockheed Martin, первый полет «Ориона» в беспилотном режиме должен состояться в 2020 году. Уже в 2022 году должен быть запущен двигательно-энергетический модуль окололунной станции LOP-G (Gateway) с малым жилым модулем. К нему отправится корабль «Орион» с астронавтами на борту. Он должен будет выполнить стыковку с LOP-G, что не входило в первоначальный план миссии. Два модуля взлетно-посадочной платформы должны быть по отдельности доставлены на LOP-G в начале 2024 года на коммерческих носителях, и позднее в этом же году должен состояться третий полет «Ориона», в ходе которого астронавты перейдут в кабину взлетно-посадочного модуля и высадятся на Луну в районе южного полюса.

Для разработки лунного модуля Lockheed Martin предполагает использовать наработки по герметичной кабине корабля «Орион».

Предложенный план пока не принят, но, вероятно, он составит основу будущей стратегии НАСА. Между тем, он не может не вызывать вопросы у международных партнеров агентства, которые уже влились в разработку плана совместной с НАСА постройки окололунной станции Gateway. Структура станции после инициативы Белого дома, вероятно, будет упрощена, а график ее постройки сдвинется «вправо». В то же время, Канада уже запланировала выделение двух миллиардов долларов на разработку руки-манипулятора для станции Gateway, а теперь непонятно, когда потребуется этот манипулятор и потребуется ли он вообще.

На вопрос журналистов об этой коллизии Джим Брайденстайн дипломатично заметил, что на второй фазе новой лунной программы откроются возможности для международного сотрудничества, а Европейское космическое агентство продолжит производить служебные модули для всех кораблей «Орион».

В связи с крайне напряженным графиком сейчас у НАСА очень мало времени на проработку стратегии, а поэтому стоит ждать прояснения ситуации уже в ближайшие месяцы.

Обсудить

Американская исследовательская станция InSight совершила посадку на Марс 27 ноября 2018 года. В декабре аппарат установил на поверхности планеты свой сверхчувствительный сейсмометр SEIS, один из основных научных приборов всей миссии, а 12 февраля был развернут второй ключевой прибор – блок измерения тепловых потоков и физических свойств HP3 (Heat Flow and Physical Properties Package).

Прибор HP3 разработан для миссии InSight Немецким космическим агентством (DLR). Его задачей является измерение температуры под поверхностью Марса. HP3 состоит из наземного блока и зонда-«крота», который при помощи ударного механизма должен погрузиться на глубину 5 м. Зонд соединен с наземным блоком лентой, на которой с интервалом 10 см установлены термодатчики. Процесс погружения начался 28 февраля. После первого включения «крот» погрузился приблизительно на 30 см, т. е. 3/4 своей высоты. Во второй раз ударный механизм зонда был активирован 2 марта. Все системы сработали штатно, однако глубина погружения «крота» заметным образом не увеличилась. Кроме того, «крот» приобрел угол наклона в 15 градусов относительно перпендикуляра к поверхности.

Проанализировав ситуацию, специалисты решили провести пробное короткое включение прибора. Оно состоялось 26 марта. Первые результаты были получены на следующий день, но информация с сейсмометра пришла только в конце недели. Анализ собранных данных начался 1 апреля и продолжается до сих пор.

Специалисты считают проведенный тест успешным, но это не означает, что проблема исчезла. В результате короткого включения (10-15 минут) ударного механизма, «крот» погрузился приблизительно на полсантиметра. Как показала съемка, во время включения механизма опорная конструкция на поверхности наклонялась вперед. Данные с сейсмометра пока анализируются.

У инженеров есть три версии, объясняющие возникшую с «кротом» проблему.

Согласно первой версии, «крот» каким-то образом зацепляется за опорную структуру. Эта гипотеза объясняет ее наклоны при включении ударного механизма, однако, по мнению разработчиков прибора, лента с датчиками может зацепиться за опору только в крайне маловероятных условиях. Тем не менее, эта версия не отброшена. Функциональная модель прибора HP3 была отправлена из Германии в Лабораторию реактивного движения НАСА для проведения испытаний.

Второе объяснение самое простое: зонд на глубине 30 см натолкнулся на камень размером не менее 10 см. Однако ученые, опираясь на данные о количестве камней на поверхности Марса в районе посадки InSight, считают, что вероятность такого события не превышает нескольких процентов.

Третья гипотеза чуть сложнее. При ударе пенетратора о поверхность Марса возникает отдача, которая оценивается в 7 Ньютонов. Чтобы «крот» погружался под поверхность, эта отдача при ударе должна поглощаться трением со стороны горных пород. Различные горные породы обладают разным внутренним трением. Некоторые породы – например, кварцевый песок – осыпаются под небольшим углом к поверхности, а другие могут поддерживать скважины с вертикальными стенки. Марсианский песок должен осыпаться и создавать трение на стенках «крота», однако у поверхности планеты он зачастую покрыт более твердой коркой, частицы которой слиплись, как у песчаника. Обычно толщина этой корки не превышает нескольких сантиметров, а потому она не представляет проблемы. Но, судя по всему, в районе посадки InSight ее мощность достигает 20 см. В результате продолжительной нагрузки отверстие вокруг зонда расширилось, и сейчас он не получает трения на боковых стенках и, следовательно, не может гасить силу отдачи. Даже если твердая корка разрушилась, то ее частицы, упавшие в отверстие с «кротом», вряд ли создают нужное трение.

Сейчас специалисты на Земле склоняются именно к третьей гипотезе. Пока окончательное решение на этот счет не принято, но скомпенсировать отдачу можно будет, например, при помощи руки-манипулятора, которая установлена на станции InSight.

Ссылка: dlr.de

Обсудить

1. Beresheet разбился при посадке на Луну.

Израильская автоматическая межпланетная станция «Берешит» (Beresheet) не смогла выполнить мягкую посадку на Луну. Вечером 11 апреля аппарат разбился о поверхность Луны из-за отказа основного двигателя, возникшего при выполнении операции торможения.

«Берешит» был разработан некоммерческой организацией SpaceIL на пожертвования спонсоров. Несмотря на неудачу при посадке, он войдет в историю как первая израильская АМС, достигшая орбиты Луны, и первая межпланетная станция, построенная на частные средства.

Организация X-PRIZE подтвердила свое решение выдать SpaceIL «утешительный приз» в размере $1 млн. К сожалению, этого слишком мало для постройки второго аппарата. Первый «Берешит» обошелся в приблизительно $95 млн.

2. Состоялся второй успешный пуск Falcon Heavy.

Сегодня ночью (12 апреля в 1:35 мск) со стартовой площадки №39А на мысе Канаверал стартовала во второй раз в истории ракета-носитель Falcon Heavy компании SpaceX – на сегодняшний день, самая мощная ракета в мире.

По многим параметрам сегодняшний пуск стал новым для Falcon Heavy. Это первый ее полет в рабочей модификации: все блоки первой ступени и вторая ступень ракеты имели версию «Блок 5». Предыдущая Falcon Heavy, стартовавшая в феврале 2018 года, была собрана с использованием боковых модулей «Блок 3». Кроме того, вчерашний пуск стал для Falcon Heavy первым коммерческим. На геопереходную орбиту был выведен коммуникационный спутник Arabsat-6A. Третий пуск Falcon Heavy будет выполнен в интересах ВВС США, причем для него будут использованы боковые ускорители от сегодняшнего пуска.

На этот раз SpaceX удалось вернуть все три модуля первой ступени ракеты. Боковые ускорители выполнили посадку на две площадки во Флориде, а центральный блок (он достиг скорости около 10 700 км/ч) мягко приземлился на автономную плавучую платформу Of Course I Still Love You. Кроме того, SpaceX выловила из воды обе створки головного обтекателя, и Илон Маск уже пообещал использовать их в другой миссии в конце этого года.

Согласно официальному сайту SpaceX, Falcon Heavy должна выводить до 63,8 т на низкую околоземную орбиту и до 26,7 т на ГПО в одноразовом варианте. Стоимость миссии для заказчиков с возвратом ступеней составляет $90 млн, но в этом случае грузоподъемность на геопереходную орбиту уменьшается до 8 т. SpaceX не озвучивает стоимость одноразовой Falcon Heavy, но Илон Маск приводил свою оценку в твиттере. По его словам, ракета без возврата центрального модуля обойдется заказчику в $95 млн, а ракета с потерей всех модулей первой ступени будет стоить $150 млн.

Ниже приведена запись официальной трансляции SpaceX. Старт Falcon Heavy – 19:58. Посадка боковых ускорителей – 27:30, посадка центрального блока – 29:40.

3. 12 апреля – День космонавтики. С праздником!

Космическая лента

Обсудить