На прошлой неделе директор пилотируемых миссий в компании Boeing и бывший астронавт НАСА Крис Фергюсон представил журналистам пилотируемый корабль Starliner, разрабатываемый для выполнения контракта с НАСА. Фергюсон кратко рассказал о текущих планах разработчиков и о том, чем будут заниматься астронавты в ходе полета.

График разработки пилотируемого корабля Starliner компании Boeing отличается от аналогичного графика SpaceX. Основные усилия вкладываются в подготовку второго корабля, который должен будет полететь с тремя астронавтами на борту не ранее середины следующего года. Эта миссия называется CFT (Crew Flight Test). Корабль, который должен полететь первым без людей (миссия OFT, Orbital Flight Test), остается на втором плане.

После того, как работы со вторым кораблем Starliner в сборочном цехе Boeing завершатся, он должен быть отправлен в испытательный центр в Эль Сегундо в Калифорнии для проведения вибрационных, вакуумных и квалификационных испытаний. Эти тесты необходимы для сертификации пилотируемого аппарата, поэтому первый Starliner – его полет запланирован на конец этого или начало следующего года – проходить аналогичные испытания не будет. Специалисты сборочного цеха Boeing, построенного специально для работы с коммерческими пилотируемыми кораблями, займутся кораблем для OFT только после отправки второго корабля в Калифорнию.

Панель управления корабля Boeing Starliner создавалась с оглядкой на интерфейсы управления пилотируемого корабля Orion, разрабатываемого Lockheed Martin, а также военных истребителей пятого поколения. С ней смогут работать как один, так и два астронавта.

Разработчики приняли решение не использовать в «Старлайнере» сенсорные панели. По краям дисплеев находятся кнопки для взаимодействия, которые позволяют управлять виртуальными интерактивными элементами на экране, аналогично тому, как это работает в некоторых старых банкоматах. Конечно, в некоторых случаях у астронавта может не быть времени для навигации по экранам для выбора нужно команды. Поэтому помимо экранов, на панели управления находится несколько десятков кнопок и переключателей для прямого управления кораблем. Общее число кнопок на панели управления уменьшено до 40. Для сравнения, в кабине космического шаттла было около 1100 кнопок.

Космический корабль Starliner будет выполнять операции автоматически, но астронавты должны хорошо представлять, какую задачу в каждый момент времени выполняет автоматика. При необходимости у астронавта будет возможность вмешаться и перевести корабль на ручное управление.

Бортовые системы будут управлять кораблем на протяжении всего первого полета к Международной космической станции. В соответствии с требованиями НАСА, Starliner всегда будет в состоянии выполнить весь полет от начала до конца без контроля со стороны человека. Однако в ходе двух испытательных миссий OFT и CFT стыковка дополнительно будет контролироваться астронавтами, находящимися на МКС.

В базовом режиме полет от старта до стыковки со станцией в миссии OFT займет менее 24 часов. Такая же схема полета сохранится для эксплуатационных миссий.

При разработке интерфейса большое внимание уделялось тому, как отображается информация о ходе полета для астронавтов. Пилот корабля будет видеть в реальном времени циклограмму полета и результат ее исполнения. Например, на этапе стыковки будет показано одновременно в наложении реальное (с камеры) и расчетное (по данным навигационной системы) расположение стыковочного узла станции относительно корабля.

Корабль Boeing Starliner, как и SpaceX Dragon 2, будет оборудован санузлом.

Ссылка: nasaspaceflight.com

Обсудить

Наличие на Луне воды активно отрицалось еще 30-40 лет назад. В образцах грунта, доставленных с Луны советской станцией «Луна-24», присутствовали частицы воды, однако мировая наука не принимала эти данные во внимание. Вода была найдена и в образцах, доставленных американскими пилотируемыми экспедициями, однако эти измерения списывались на недостаточную герметичность упаковки образцов. До 1990-х годов Луна считалась «сухим» космическим телом. Однако в 1998 году зонд Lunar Prospector при помощи нейтронного детектора обнаружил на Луне следы водорода, что указывает на присутствие водяного льда. В 2005 году НАСА запустило пенетрационную миссию Deep Impact. После падения космического аппарата на Луну в поднявшемся облаке пыли телескопы зафиксировали частицы воды. Наконец, в 2009 году был запущен американский лунный спутник LRO с российским нейтронным детектором LEND. По результатам работы этого детектора в Институте космических исследований РАН была построена карта распространения воды на Луне.

Оказалось, что содержание водяного льда в реголите увеличивается к полюсам и особенно велико в затененных кратерах. Ученые объяснили такое распределение наличием «холодных ловушек» на полюсах – затененных кратеров, внутрь которых никогда не попадает солнечный свет. В таких местах всегда сохраняется низкая температура, и лед на поверхности может существовать в течение долгого времени, не превращаясь в пар.

Без прямого изучения сложно сказать наверняка, в каком виде находится вода на Луне. Молекулы воды могут входить в состав молекул минералов. Такое состояние называется связанным, и с практической точки зрения связанная вода большой пользы не принесет. Водяной лед также может быть перемешан с реголитом в виде мелких частиц в сравнительной невысокой концентрации. Наконец, лед может выделяться в отдельные относительно чистые линзы, как на поверхности Луны, так и под ней.

В новом исследовании, результаты которого опубликованы в журнале Proceedings of the National Academy of Sciences, были использованы данные с индийского спутника «Чандраян-1» (Chandrayaan 1). Он был запущен в 2008 году и проработал на орбите Луны почти год. Установленный на «Чандраян-1» спектрометр M3 (Moon Mineralogy Mapper), разработанный Лабораторией реактивного движения НАСА и Брауновским университетом, был предназначен для картирования минералогического состава поверхности Луны. В своем исследовании американские ученые выделили в данных прибора M3 четкие сигнатуры водяного льда. Спектральные линии водяного льда были найдены в отраженном свете, а поглощающие свойства в инфракрасном свете позволили подтвердить, что речь идет именно о льде в твердом состоянии. Таким образом, существование водяного льда на поверхности Луны – точнее, в первых нескольких миллиметрах реголита – авторы исследования считают доказанным.

Основная часть найденного водяного льда находится в постоянно затененных кратерах на южном полюсе, где температура не поднимается выше -150 градусов Цельсия. На северном полюсе льда меньше, и он не так жестко привязан к рельефу, хотя тоже часто встречается в кратерах.

Водяной лед может иметь очень большое значение для будущего пилотируемого освоения Луны. Это не только источник воды и кислорода для космонавтов, но также источник топлива для ракет.

Ссылка: nasa.gov

Обсудить

Управление по вопросам космического пространства ООН (UNOOSA) и Китайское агентство по пилотируемой космонавтике (CMSA) предоставляют научным организациям со всего мира уникальную возможность провести свой научный эксперимент в космосе. Предложение действует для будущей Космической станции Китая (CSS), работа которой ориентирована на представителей всех стран, входящих в ООН, для создания новой парадигмы деятельности в космосе – открытой для всех.

Доступные варианты участия:

  • проведение экспериментов внутри CSS с использованием оборудования заявителя;
  • проведение экспериментов внутри CSS с использованием оборудования и научных стоек Китая;
  • проведение экспериментов снаружи CSS с использованием оборудования заявителей.

Эта возможность открыта для всех государств-членов Организации объединенных наций, однако преимущество отдается развивающимся странам. И государственные и частные организации имеют право подать заявку, в том числе совместную. Заявители отвечают за разработку своих экспериментов за свой счёт.

Анкета, заверенная подписями и печатью организации, должна быть отправлена в Управление по вопросам космического пространства ООН в срок до 31 августа 2018 года.

Космическая лента

Обсудить

Посадочная платформа китайской научной миссии «Чанъэ-4» будет запущена в декабре 2018 года. Об этом было объявлено 15 августа в Пекине на конференции Государственной администрации по науке, технологиям, промышленности и национальной обороне.

Для запуска будет использована ракета CZ-3B, которая стартует с космодрома Сичан на юго-западе страны. «Чанъэ-4» должен будет впервые в истории выполнить посадку на обратной стороне Луны. Район посадки находится внутри бассейна Южный полюс – Эйткен, который по своей природе является ударным кратером. Точное место посадки определено, но публично не представлено.

На посадочной платформе находится маленький луноход, имя которого будет выбрано осенью при помощи онлайн-голосования.

Изначально данный космический аппарат был дублером миссии «Чанъэ-3», запущенной в декабре 2013 года, но после ее успеха план миссии изменили. Для того, чтобы выполнить посадку на обратной стороне Луны, потребовалось создать спутник-ретранслятор. Спутник «Цюэцяо» был запущен в 20 мая этого года. Ретранслятор находится вблизи второй точки Лагранжа приблизительно в 65 тысячах км за Луной около линии Земля-Луна. Оттуда он сможет передавать сигнал как на Землю, так и на обратную сторону Луны. Для связи с наземными станциями будет использоваться антенна S-диапазона, а связь с посадочной станцией будет поддерживаться в X-диапазоне.

В связи со сложным рельефом в районе посадки, в конструкции посадочного аппарата и лунохода потребовалось внести изменения. Посадочная платформа будет оборудована посадочной камерой LCAM, камерой для съемки ландшафта TCAM и немецким нейтронным детектором LND (Lander Neutrons and Dosimetry). На луноходе, как и в миссии 2013 года, будут панорамная камера и небольшой радар. К ним добавятся два шведских прибора: спектрометр VNIS, работающий в видимом и инфракрасном диапазоне, и малый анализатор нейтральных частиц ASAN (Advanced Small Analyzer for Neutrals).

На «Чанъэ-4» также будет проведен небольшой биосферный эксперимент, подготовленный китайскими университетами. В нем будут задействованы семена крестоцветных, картофель и яйцами шелкопряда.

Ссылка: spacenews.com

Обсудить

В США уже более 10 лет разрабатывается новый пилотируемый корабль – «Орион» (Orion). Несмотря на многочисленные и регулярные сдвиги в расписании, дата его первого полета к Луне приближается. Сейчас старт сверхтяжелой ракеты SLS с кораблем «Орион» без экипажа на борту – эта миссия известна как EM-1 (Exploration Mission 1, Исследовательская миссия №1) – назначен на середину 2020 года. Между тем, НАСА все еще продолжает пересматривать и уточнять параметры этой миссии.

Формально, полет «Ориона» через два года не будет для него первым. В декабре 2014 года состоялась миссия EFT-1, в ходе которой на орбиту Земли был запущен командный модуль корабля с макетом служебного отсека. В миссии EM-1 капсула будет существенно доработана, и также получит полностью готовый летный образец служебного модуля, который называется ESM (European Service Module). Разработкой последнего по контракту между ЕКА и НАСА занимается компания Airbus Defense and Space.

Согласно плану миссии, «Орион» выполнит полет по дальней ретроградной орбите Луны. Вся экспедиция продлится либо 26-27 (короткий вариант), либо 38-42 (длинный вариант) суток. Период обращения корабля по орбите спутника Земли составит 12 суток. В случае короткого варианта он выполнит всего половину витка по этой орбите, а в шестинедельном варианте миссии, соответственно, полтора витка. Этот вариант миссии был добавлен для того, чтобы гарантировать посадку корабля в светлое время суток в любое время года.

Служебный модуль «Ориона» может обеспечить длительность автономного полета с астронавтами на борту не более 21 суток. Максимальная длительность полета в беспилотном режиме – 210 суток.

В ходе EM-1 будет проведено несколько сотен проверок различных систем. Все тесты подразделяются на три большие группы: испытания теплозащитного щита при входе в атмосферу, вся последовательность посадки от начала до конца и функционирование всех систем в условиях открытого космоса. Lockheed Martin планирует провести интенсивные испытания двигательной системы, выполнить которые было бы невозможно в присутствии людей на борту. Задача отработки корабля в стрессовых условиях стала еще одной причиной увеличения продолжительности полета.

Разработчики также изучили возможность увеличения максимальной продолжительности полета до 1000 суток. Для этого потребуется внести несколько сравнительно простых изменений в конструкцию корабля – например, добавить третий контур уплотнителя в крышку люка, чтобы исключить даже минимальные утечки воздуха.

Поддержку миссии будет обеспечивать новый наземный комплекс управления, построенный специально для пусков SLS с пилотируемым кораблем «Орион».

На первом этапе ракета SLS выведет собственную верхнюю ступень ICPS и корабль «Орион» на опорную орбиту вокруг Земли. В конце первого витка ICPS длительным включением двигательной установки отправит корабль в полет к Луне. Через 10 минут после прекращения работы двигателей сработает пружинная система разделения, которая отправит «Орион» в автономный полет. Пружины придадут первоначальную скорость относительно верхней ступени SLS, однако для удаления от нее корабль через минуту после разделения дополнительно задействует вспомогательные двигатели.

Служебный модуль «Ориона» имеет три двигательных блока: двигатели системы управления ориентацией, применяемые также для малых коррекций скорости (RCS), вспомогательные маневровые двигатели (Aux) для большинства маневров разгона и основная орбитальная система маневрирования (OMS-E) для больших межорбитальных переходов и коррекций.

На пути к Луне в миссии EM-1 будет много возможностей для проверки разных типов двигателей. Маршевую установку OMS-E предполагается испытать через несколько часов после отделения от верхней ступени SLS. По словам Нижуд Меранси (Nujoud Merancy), руководителя анализа исследовательских миссий в Космическом Центре НАСА им. Джонсона, для коррекции ошибки выведения ICPS хватило бы вспомогательных двигателей. Однако тогда первый случай использования маршевой установки OMS-E пришелся бы на пролет корабля в тени Луны, когда связи с Землей не будет. Разработчики хотят проверить работу этих двигателей заранее. Поэтому, чтобы не исказить траекторию, включение будет выполнено вне плоскости движения. Время включения составит от 5 до 30 секунд.

Для выхода на дальнюю ретроградную орбиту будет выполнено два включения главных двигателей. Первый – при пролете за Луной в момент максимального сближения. В этой точке расстояние до поверхности Луны составит 100 км. Спустя четыре дня состоится второе включение, которое завершит переход на ретроградную орбиту. Для возвращения к Земле также потребуется два включения OMS-E.

При перелетах Земля-Луна и Луна-Земля «Орион» будет развернут солнечными батареями к Солнцу и радиаторам к глубокому космосу, однако время от времени корабль будет разворачиваться для сверки звездных датчиков. Поддержание сверхточной ориентации «Ориону» не требуется: допускается угловое отклонение от солнечной ориентации в 20 градусов. Солнечные батареи могут поддерживать ориентацию при отклонении до 40 градусов.

В 2020 году командный отсек корабля «Орион» не будет полностью готов к перевозке астронавтов. В нем будут установлены одно или два кресла для астронавтов из четырех, а также будет полностью отсутствовать система обеспечения жизнедеятельности. Вместо нее предполагается установить баллон с азотом для наддува герметичного отсека в случае разгерметизации, поскольку при посадке в нем должно быть обеспечено нормальное давление. Особой подготовки воздушной смеси не будет: аппарат отправится к Луне с тем воздухом, который останется в нем при закрытии люка на космодроме. В салоне будет находиться манекен с датчиками для оценки дозы радиации, которую получит астронавт в ходе аналогичного полета.

Помимо этого, в кабине «Ориона» будет размещена камера. Другая камера будет установлена снаружи на солнечной панели корабля. В ходе полета они передадут на Землю фотографии в высоком разрешении и видео в плохом качестве. Полные видеозаписи будут извлечены после возвращения корабля на Землю.

Ссылка: nasaspaceflight.com

Обсудить

Индийское космическое агентство ISRO снова перенесло запуск лунной исследовательской станции «Чандраяаан-2». Старт не состоится в этом году.

Индийская лунная миссия «Чандраяаан-2» состоит из трех элементов: орбитального модуля, посадочной платформы и закрепленного на ней малого лунохода. Подробнее об устройстве космического аппарата и научных задачах миссии можно прочитать здесь.

«Чандраяаан-2» имеет длинную историю. В 2007 году представители Роскосмоса и Индийского космического агентства подписали соглашение, согласно которому российская автоматическая станция должна была доставить на спутник Земли индийский мини-луноход в 2012 году. От сотрудничества Индия отказалась в 2013 году, когда российская лунная программа была полностью пересмотрена из-за аварии научно-исследовательской станции «Фобос-Грунт». После этого ISRO начала разработку собственной посадочной станции. За прошедшие годы запуск «Луны-Глоб» переносился на 2015, 2016, 2018, 2019, 2020 и, наконец 2022 год. Старт самостоятельной индийской миссии «Чандраян-2» был запланирован на весну этого года.

В марте было объявлено о переносе старта «Чандраяаан-2» на октябрь, а 7 августа появились сообщения о переносе запуска на январь 2019 года. Причина – технические проблемы в системе мягкой посадки посадочной платформы. Ее испытания продолжаются. Тесты орбитального модуля уже полностью завершены, он готов к запуску.

Космическая лента

Обсудить

11 августа в 10:33 мск в США состоится ранее отложенный запуск научного спутника Parker Solar Probe (Солнечный зонд им. Паркера). Если выведение и перелет пройдут успешно, скоро он начнет изучать солнечную корону.

Parker Solar Probe – сравнительно небольшой космический аппарат. Его масса составляет около 630 кг, тогда как зачастую масса научных спутников достигает нескольких тонн. В то же время, для запуска PSP будет использована самая тяжелая ракета, имеющаяся в распоряжении НАСА – Delta IV Heavy компании ULA. Delta IV Heavy известна не только своей грузоподъемностью, но и самой высокой в мире ценой. По старым контрактам ее стоимость составляла $400 млн, а по новым достигает $600 млн. Для сравнения, более мощная (но не сертифицированная для запуска научных спутников НАСА) Falcon Heavy стоит $90-150 млн.

Parker Solar Probe предполагается вывести на вытянутую эллиптическую с очень низким перигелием, высота которого составит 8,5 радиусов Солнца. Во время межорбитального перелета зонд будет разогнан до 690 000 км в час, что установит рекорд скорости искусственных объектов. Кроме того, аппарат во время своего обращения вокруг Солнца выполнит семь гравитационных маневров у Венеры для коррекции курса и торможения. При максимальном сближении расстояние от космического аппарата до звезды составит 5,9 млн км, т.е. он сможет изучить корону Солнца изнутри.

Срок жизни аппарата – 7 лет. За время активной работы он должен будет выполнить 24 витка вокруг Солнца.

Температура в солнечной короне, где будет пролетает космический аппарат, достигает 1350 градусов, в то время как на борту аппарата она не должна подниматься выше 30 градусов. Теплозащитный экран Parker Solar Probe сделан из углеродного композитного вспененного материала толщиной 11,4 мм, с обеих сторон покрытого листами углеродного волокна.

Parker Solar Probe оборудован телескопом с камерой высокого разрешения, поэтому можно ожидать, что он сделает фотографии не только Солнца, но и Венеры.

Запуск будет транслироваться на телеканале НАСА.

Ссылка: nasa.gov

Обсудить