Роскосмос завершил расследование аварии ракеты «Союз-ФГ» 11 октября.

11 ноября произошла авария ракеты «Союз-ФГ», которая должна была вывести на орбиту пилотируемый корабль «Союз МС-10» с космонавтом Алексеем Овчининым и астронавтом Ником Хейгом. Благодаря работе системы аварийного спасения, корабль совершил посадку, и его экипаж не пострадал.

Расследование причин произошедшего заняло менее трех недель. Председатель аварийной комиссии Олег Скоробогатов на специальной конференции в четверг 1 ноября заявил: «Пуск завершился аварией ракеты-носителя из-за нештатного отделения одного из боковых блоков (блок «Д»), ударившего носовой частью центральный блок (блок «А») в районе бака горючего, что привело к его разгерметизации и, как следствие, к потере стабилизации ракеты».

Причина нештатного разделения – не открывшаяся крышка сопла увода бака окислителя блока «Д» из-за деформации штока датчика контакта разделения (изгиб на 6˚45‘), допущенной при сборке «пакета» на космодроме Байконур. Причина аварии носит эксплуатационный характер и распространяется на другие уже собранные ракеты-носители типа «Союз».

«Система аварийного спасения корабля «Союз МС-10» сработала в соответствии с заложенной логикой. Экипаж действовал в соответствии с требованиями бортовой инструкции и указаниями Центра управления полетами». – говорится в сообщении Роскосмоса.

Также Роскосмос опубликовал видео с камеры, которая была установлена на ракете «Союз-ФГ». Камеры устанавливаются на ракетах, выполняющих запуски по пилотируемой программе, с февраля 2017 года, однако обычно видео с них не публикуется. С лета 2018 года («Союз МС-09») камера также стоит на пилотируемом корабле «Союз». Кадры с нее можно наблюдать в трансляции запуска.

Завершена американская научная миссия Dawn.

Космический аппарат Dawn («Рассвет») был запущен в 2007 году. Целью миссии было изучение древних объектов Главного пояса астероидов. Отличительной особенностью аппарата стало использование электрореактивной (ионной) маршевой двигательной установки. Благодаря ей Dawn смог изучить сразу два объекта: астероид Веста и карликовую планету Церера. В 2011 год он достиг астероида, проработал более года на его орбите, а затем направился к Церере. С апреля 2015 года Dawn находился на орбите карликовой планеты.

После того, как основная миссия Dawn была завершена, он был перенаправлен на низкие орбиты. В августе он опустился на высоту в несколько десятков километров над поверхностью Цереры.

Продолжительность работы космического аппарата ограничивали запасы топлива (гидразина) в системе управления ориентацией. Особенно эта проблема обострилась после множественных отказов маховиков, из-за чего роль двигателей резко возросла.

Очередные сеансы связи с Dawn были запланированы на 31 октября и 1 ноября, но они не состоялись. Изучив все возможные причины, специалисты пришли к выводу, что отсутствие связи вызвано отсутствием топлива на борту аппарата. Таким образом, миссию Dawn можно считать завершенной. Всего за свои 11 лет в космосе этот аппарат пролетел 6,9 млрд километров. Он будет оставаться на орбите в ближайшие несколько десятков лет (не менее 50 лет с вероятностью 99%), после чего упадет на поверхность Цереры.

Выше приведены снимки, которые Dawn сделал в последние месяцы своей работы.

Космическая лента

Обсудить

Американская исследовательская станция OSIRIS-REx продолжает свое сближение с астероидом 101955 Бенну. 29 октября камера PolyCam, установленная на этом космическом аппарате, запечатлела астероид в рекордно высоком разрешении. C расстояния 330 км в течение приблизительно одной минуты было сделано восемь снимков. За время съемки космический аппарат продолжал движение, и между первым и последним снимками поворот астероида составил 1,2 градуса. Специалисты использовали специальный алгоритм обработки изображений, чтобы на основе полученных восьми снимков построить одну фотографию высокого разрешения.

Северный полюс астероида находится в верхней части изображения.

23 октября с расстояния 3 тысячи км камера PolyCam сняла серию изображений, из которых была составлена анимация вращения Бенну вокруг своей оси.

Подробнее о миссии OSIRIS-REx можно прочитать здесь.

Ссылка: asteroidmission.org

Обсудить

26 ноября американский исследовательский космический аппарат InSight должен достичь Марса и выполнить мягкую посадку на его поверхность. После этого он раскроет свои солнечные панели и активирует руку-манипулятор, однако передвигаться по поверхности Марса, в отличие от предыдущих американских аппаратов, InSight не будет. Целью этой небольшой миссии, является изучение геологического строения Марса в точке посадки. InSight был разработан и запущен в рамках программы американского космического агентства Discovery, по которой финансируются низкобюджетные научно-исследовательские миссии.

Один из важнейших инструментов InSight, сейсмометр SEIS, попытается зафиксировать подземные толчки на Марсе. Он способен заметить тектоническую активность в любой точке планеты. Если это удастся, по длине сейсмических волн и скорости их распространения ученые получат представления о внутреннем устройстве Марса. SEIS является в тысячи раз более чувствительным, чем сейсмометры, которые были установлены на посадочных станциях «Викинг». А потому для проведения измерений он будет изолирован от ветра и резких перепадов температуры специальным защитным покрытием.

Еще один интересный инструмент InSight – пенетратор HP3. Он «проткнет» Марс на глубину до 5 м под поверхность, после чего начнет измерять температуру грунта под поверхностью планеты.

Район посадки InSight находится на Равнине Элизиум.

На пути к Марсу InSight сопровождают два экспериментальных спутника-кубсата MarCO-A (EVE) и MarCO-B (Wall-E). Их задача – продемонстрировать возможность использования «кубсатов» для выполнения небольших задач в научных миссиях в дальнем космосе. В будущем НАСА планирует более широко использовать «кубсаты». В частности, спутники этого формата будут запущены к Луне в ходе первого пуска сверхтяжелой ракеты SLS. На аппараты MarCO особых задач не возлагается. Они должны будут просто отснять отделение и вход в атмосферу Марса станции InSight.

3 октября MarCO-B при помощи своей широкоугольной камеры сделал приведенный выше снимок. Точка в центре его правой нижней четверти – это Марс, к которому и направляется космический аппарат. Справа находится узконаправленная антенна, слева снизу – привод этой антенны, а в верхнем левом углу – кусок термозащиты. Снимок сделан с расстояния около 12,8 млн км.

Ссылки: jpl.nasa.gov, jpl.nasa.gov

Обсудить

Сегодня в 3:15 мск с космодрома Плесецк стартовала ракета «Союз-2.1б» с военным спутником «Космос-2528». Как сообщает Минобороны, запуск прошел успешно. Считается, что под номерным именем «Космос-2528» запущен спутник радиотехнической разведки «Лотос-С1», разработанный РКЦ «Прогресс» и петербургским «Арсеналом».

10 октября произошла авария ракеты «Союз-ФГ», которая должна была вывести на орбиту пилотируемый корабль «Союз МС-10» с космонавтом госкорпорации «Роскосмос» Алексеем Овчининым и астронавтом НАСА Ником Хейгом. Работа аварийной комиссии, расследующей причины аварии, еще не завершена, а потому отказ от переноса сегодняшнего пуска «Союза» вызывает некоторое удивление.

Ссылка: function.mil.ru

Обсудить

В начале октября два старых и знаменитых американских космических телескопа последовательно вышли из строя. Первым отказал телескоп им. Хаббла: 5 октября он перешел в безопасный режим из-за проблем с одним из резервных гироскопов. Вслед за ним, 10 октября, рентгеновский телескоп «Чандра» также сбросился безопасный режим, и причиной тоже стала некорректная работа гироскопа.

На космическом телескопе им. Хаббла изначально было установлено шесть гироскопов для определения его пространственной ориентации. К настоящему времени в работоспособном состоянии оставались четыре гироскопа, и предполагалось, что проблемы с ними не возникнут как минимум до 2020 года. Кроме того, для работы телескопа достаточно трех, так что поломка, даже если бы ее не удалось устранить, не была фатальной.

Гироскопы «Хаббла» имеют два режима: для отслеживания крупных движений, когда телескоп меняет точку обзора, и для точного позиционирования при наведении на цель. В начале октября на одном из запасных гироскопов была зафиксирована аномально высокая скорость вращения, что препятствует его использованию в режиме точного позиционирования. 16 октября специалисты попробовали выключить гироскоп и снова включить через секунду, но это не помогло. 18 октября космический аппарат выполнил серию маневров с вращением в разных направлениях. При каждом маневре гироскоп переключался из одного режима в другой, что должно было снять накопившуюся погрешность. После этих маневров было зафиксировано значительное снижение скорости вращения. Дополнительные маневры на следующий день полностью вернули гироскоп в работоспособное состояние.

Прежде чем телескоп вернется к наблюдениям, специалисты планируют провести еще одну серию испытаний гироскопа.

В отличие от «Хаббла», на рентгеновской обсерватории «Чандра» отказал один из активных гироскопов. В результате трехсекундного сбоя прибор выдавал некорректные данные. Бортовой компьютер зафиксировал ошибку и перевел космический аппарат в безопасный режим. После этого гироскоп работал корректно, однако команда НАСА приняла решение перевести его в резерв.

После нескольких дополнительных проверок и обновления программного обеспечения рентгеновская обсерватория вернется к работе.

Ссылка: nasaspaceflight.com

Обсудить

Европейское космическое агентство успешно запустило автоматическую межпланетную станцию BepiColombo к Меркурию рано утром 20 октября. Вечером того же дня перелетный модуль станции MTM передал на Землю снимок раскрытых солнечных панелей. Модуль оборудован тремя черно-белыми навигационными камерами разрешением 1024x1024 пикселя. Первая из них была активирована в день запуска, оставшиеся две – 21 октября. Эти же камеры будут использоваться для съемки Земли, Венеры и Меркурия при выполнении гравитационных маневров.

Европейское космическое агентство успешно запустило автоматическую межпланетную станцию BepiColombo к Меркурию рано утром 20 октября. Вечером того же дня перелетный модуль станции MTM передал на Землю снимок раскрытых солнечных панелей. Модуль оборудован тремя черно-белыми навигационными камерами разрешением 1024x1024 пикселя. Первая из них была активирована в день запуска, оставшиеся две – 21 октября. Эти же камеры будут использоваться для съемки Земли, Венеры и Меркурия при выполнении гравитационных маневров.

Ссылка: esa.int

Обсудить

BepiColombo – первая миссия Европейского космического агентства по изучению Меркурия. Она разрабатывается совместно с JAXA (японским космическим агентством) и состоит из двух научных спутников: MPO (Mercury Planetary Orbiter, разработан ЕКА) и MMO (Mercury Magnetospheric Orbiter, разработан в Японии). Аппараты доберутся до Меркурия вместе, закрепленные на платформе MTM (Mercury Transfer Module, ЕКА), после чего отделятся и начнут по отдельности выполнять свои научные программы.

Список научных задач миссии включает изучение происхождения и эволюции Меркурия, изучение внутреннего строения, происхождения собственного магнитного поля, изучение геологических процессов на поверхности планеты и вулканизма, структуры и динамики магнитосферы.

Меркурий – самая маленькая планета в Солнечной системе, но, в то же время, очень плотная. Преобладающим элементом внутренней структуры Меркурия является металлическое ядро. Из-за низкой орбиты температура на поверхности поднимается до 430 градусов, но на затененной стороне она падает до -180 градусов. В кратерах на Меркурии найдены холодные ловушки – зоны, в которые никогда не попадает Солнце. В них сохраняется водяной лед. Поверхность планеты испещрена кратерами, но на ней присутствуют следы древней тектонической и вулканической активности.

Платформа MTM, отвечающая за доставку спутников к Меркурию, имеет маршевую электрореактивную (ионную) двигательную установку.

Европейский спутник MPO будет работать на полярной орбите высотой 480 х 1500 км с периодом обращения 2,3 часа. Он несет 11 научных инструментов. Наиболее интересные из них – стереокамера SIMBIO-SYS, лазерный высотомер BELA, детектор магнитного поля MPO-MAG, радиометр и температурный спектрометр для съемки поверхности MERTIS, рентгеновский спектрометр MIXS для составления общей карты поверхности, радио-эксперимент MORE для определения размеров ядра, ультрафиолетовый спектрометр PHEBUS. Не обошлось и без гамма-лучевого и нейтронного спектрометра MGNS от ИКИ РАН.

Японский спутник MMO для обеспечения теплового режима будет вращаться со скоростью 15 оборотов в минуту вокруг оси, расположенной под углом 90 градусов к Солнцу. Его рабочая орбита будет иметь высоту 590 х 11 640 км, период обращения составит 9,3 часа. В течение перелета к Меркурию он будет защищен специальным солнечным щитом, разработанным в Европе. MMO будет закреплен на европейском научном спутнике, а не на перелетной платформе MTM.

На японском спутнике установлено пять инструментов: магнетометр MMO-MAG изучит взаимодействие магнитосферы Меркурия с солнечным ветром, эксперимент MPPE из семи детекторов изучит плазму и энергетические частицы в магнитосфере. Задача прибора PWI – изучение электрических полей, плазмы и радиоволн в плазменной оболочке. Атмосферный спектрометр MSASI предназначен для изучения распределения и динамики натрия в экзосфере. Последний инструмент – MDM, детектор пылевых частиц.

BepiColombo будет запущен 20 октября в 4:45 мск на ракете-носителе Ariane 5 с космодрома во Французской Гвиане. Перелет к Меркурию займет 7,2 лет. В апреле 2020 года аппарат выполнит гравитационный маневр у Земли, в октябре 2020 и августе 2021 – два пролета у Венеры, и шесть маневров у Меркурия с октября 2021 по январь 2025 года. Выход на орбиту планеты ожидается в конце 2025 года.

Достигнув Меркурия, связка MPO и MMO отделится от перелетной платформы и выйдет на полярную орбиту планеты. Европейский спутник скорректирует своими двигателями орбиту до 590 х 11 640 км, после чего от него отделится японский аппарат MMO. Затем MPO продолжит коррекцию для выхода на собственную рабочую орбиту. Эти маневры займут около трех месяцев. Срок активной работы обоих спутников должен составить не менее года и может быть продлен до двух лет.

Основной технической проблемой миссии BepiColombo стала необходимость защитить аппараты от мощного излучения Солнца. В окрестностях Меркурия аппараты могут нагреваться до 450 градусов, а потому все внешние элементы космического аппарата обладают внешним защитным покрытием.

Перелетный модуль MTM для поддержания теплового режима не будет поддерживать постоянную ориентацию на Солнце – он будет вращаться, как MMO, – а потому, для снабжения ионных двигателей энергией, он оборудован большими солнечными панелями площадью 42 кв. м.

Европейский спутник MPO будет находиться в солнечной ориентации на своей рабочей орбите. Его освещенная сторона защищена большим радиатором.

Космическая лента

Обсудить