В 2009 году Рособоронэкспорт и Министерство информации Республики Ангола заключили контракт на разработку и запуск спутника связи, а также на постройку центра управления полетом, создание другой инфраструктуры и обучение ангольских специалистов работе со спутником. С российской стороны работа над космическим аппаратом была поручена РКК «Энергия». 85% стоимости контракта было оплачено из средств кредита на сумму $278,46 млн, предоставленного Росэксимбанком, ВЭБ, ВТБ и др. под гарантии правительства России. Стоимость космического аппарата составляет $252,5 млн.

В новейшей истории «Энергии» есть определенный опыт создания спутников прикладного назначения. В конце 1990-х компания разработала «Ямал-100», который стал первым российским геостационарным спутником на негерметичной платформе. Он был запущен в 1999 году и проработал 10 лет из 12,5 запланированных. Это очень хороший результат с учетом того, что ранее российские спутники работали не более нескольких лет. Более новые разработки оказались менее успешными. Например, спутник дистанционного зондирования Земли EgyptSat-2, запущенный весной 2014 года, проработал около одного года, и обстоятельства его потери не были внятно объяснены.

Согласно контракту, запуск AngoSat-1 должен был состояться до конца 2016 года. Активная работа над космическим аппаратом началась в 2012 году. Технический проект был готов к маю 2015 года.

Центр управления полетом AngoSat-1 в Анголе
Центр управления в Анголе

Для постройки AngoSat-1 была использована модернизированная версия платформы USP, корнями уходящая к от «Ямалу». В качестве поставщика рабочей аппаратуры выступила европейская компания Airbus Defence and Space. Полезная нагрузка была разработана и произведена на предприятии Airbus в британском Портсмуте.

Масса спутника Angosat-1 в заправленном состоянии составляет 1,65 т. Предназначенная для него орбитальная позиция – 14,5° в. д. Планируемый срок службы – 15 лет. Полезную нагрузку составляют 16 транспондеров C-диапазона и 6 транспондеров Ku-диапазона (по 72 МГц, в сумме – 1584 МГц). Зона обслуживания C-диапазона должна была включать в себя всю Африку, в нее также попадала Западная и Центральная Европа. В Ku-диапазоне спутник должен обслуживать Анголу и соседние с ней страны вплоть до ЮАР на юге.

Маршевая двигательная установка спутника является электрореактивной и состоит из восьми плазменных двигателей СПД-70 производства ОКБ «Факел». Потребляемая мощность одного двигателя – 0,66 кВт, суммарная максимальная тяга двигателей – 0,32 Н. Питание бортовых систем проводится по трем шинам с напряжением 28, 50 и 100 Вольт. Российская аппаратура традиционно работает на 28 В, но для полезной нагрузки и электрореактивных двигателей требуется питание по 50/100-вольтовым шинам.

На спутнике установлен блок литий-ионных аккумуляторных батарей 22x2ЛИ-85 производства ПАО «Сатурн» номинальным напряжением 80 В и энергоемкостью 16,8 кВт*ч. Новый модуль контроля и управления, обеспечивающий выравнивание напряжения на всех элементах аккумуляторной батареи, по заказу ПАО «Сатурн» разработал НИИ автоматики и электромеханики ТУСУРа. Аппаратура регулирования и контроля и аппаратура питания и управления системы энергоснабжения спутника разработаны московским АО «Авэкс». Именно это устройство раздают энергию на три шины питания с разным напряжением.

Изначально для запуска планировалось использовать принадлежащие «Энергии» комплекс «Морской старт» и украинскую ракету «Зенит». От этого плана отказались после того, как производство «Зенитов» в 2014 году было заморожено. В течение 2015 года представители РКК «Энергия» говорили, что спутник будет запущен на тяжелой «Ангаре-А5», но эти планы не сбылись. Производство «Ангары» не налажено до сих пор, а просрочки с запуском «Ангосата» грозили российской стороне штрафами. Выход удалось найти благодаря переносу космического телескопа «Спектр-РГ» с «Зенита» на «Протон-М». Находящийся на хранении уже готовый «Зенит» освободился для запуска ангольского спутника. Обойти политические проблемы позволило участие частной компании S7 Space в качестве оператора космического запуска.

Пуск ракеты «Зенит-3SLБФ» со стартовой площадки 45/1 на Байконуре со спутником AngoSat-1 состоялся 26 декабря 2017 года в 22:00 мск. Запуск был признан успешным. Спутник оказался на запланированной орбите, которая выше геостационарной орбиты в среднем на 200 км (177-329 км в зависимости от орбитального положения аппарата). После выведения спутник оказался восточнее точки стояния и начал медленный дрифт на запад со скоростью 3,2°/сутки. Предполагалось, что в начале января при приближении к 14,5° в. д. он задействует двигатели, чтобы снизить орбиту на 200 км и попасть в точку стояния на ГСО.

Утром 27 декабря информационные агентства сообщили о потере связи со спутником. Обмен информацией с Землей прекратился после построения ориентации на этапе раскрытия солнечных батарей. Вечером 28 декабря появились сообщения о восстановлении связи, и 29 декабря РКК «Энергия» выпустила официальный пресс-релиз, в котором подтвердила эту информацию и сообщила о нормальной работе всех бортовых систем аппарата.

По неподтвержденной информации, связь со спутником AngoSat-1 была потеряна во второй раз еще до Нового года. Она снова была восстановлена, но 7 января во время попытки включить двигательную установку спутник вновь перестал отвечать. Неизвестно, вышел ли спутник на связь после этого, но 15 января в специальном пресс-релизе РКК «Энергия» сообщила, что AngoSat-1, продолжая двигаться на запад, покинул зону видимости Центра управления полетами в Королеве. Он вернется в нее в середине апреля, обогнув земной шар.

Официально космический аппарат не признан потерянным и до сих пор находится на стадии летных испытаний перед сдачей заказчику. Однако пока ситуация выглядит так, будто на спутнике штатно работают только базовые бортовые системы, питаемые по шине с напряжением 28 В. Если задействовать 100-вольтовую шину так и не удастся, аппарат не сможет достичь точки стояния, да и имеющейся энергии в любом случае не хватит для питания транспондеров.

Возможность того, что восстановить работоспособность аппарата удастся, все еще остается, хотя шансов на это мало. AngoSat-1 был застрахован на $121 млн. Если Ангола не откажется от услуг России, и РКК «Энергия» возьмется за постройку нового спутника на замену первому, страховые деньги позволят частично окупить производство нового спутника. В то же время, деньги не вернут потраченное на проект время и никак не помогут спасти окончательно уничтоженную репутацию российского спутникостроения.

AngoSat-1 оставался последним зарубежным заказом для российской спутникостроительной отрасли в последние годы. Ниже приведена таблица спутников, сделанных в России для иностранных заказчиков за последние 10 лет.

СпутникРазработчикЗаказчикЗапускСтатус
KazSat-1 ГКНПЦ им. Хруничева Казахстан 18.06.2006 потерян в 2008 году
KazSat-2 ГКНПЦ им. Хруничева Казахстан 16.07.2011 активен
Amos-5 ИСС им. Решетнева Spacecom, Израиль 11.12.2011 сбои с 2012 года, потеря связи 21.11.2015
БКА ВНИИЭМ Беларусь 22.07.2012 активен
Telkom-3 ИСС им. Решетнева Telkom, Индонезия 6.08.2012 авария разгонного блока «Бриз-М»
EgyptSat-2 РКК «Энергия» Египет 16.04.2014 потерян 14.04.2015
KazSat-3 ИСС им. Решетнева Казахстан 28.04.2014 активен
AngoSat-1 РКК «Энергия» Ангола 26.12.2017 статус неизвестен

Можно заметить, что эта статистика значительно хуже, чем у серийных спутников, разрабатываемых по госзаказу. Уже сейчас очевидно, что в спутнике AngoSat-1 сбой дала аппаратура, не имеющая летной квалификации – возможно, это блок регулирования и контроля системы энергоснабжения, но точный ответ даст только проведенное расследование. По сходным причинам был потерян израильский спутник Amos 5. В нем была использована схема бортовой кабельной сети, не имеющая длительной летной истории. Вскоре после запуска начались отказы в блоках питания, которые в конечном итоге и привели к потере спутника.

Инженеры ИСС им. Решетнева сделали выводы и больше таких ошибок не допускали, но выводы сделал и заказчик – спутник Amos 6 был создан уже без участия России (правда, ему не повезло, и он погиб при взрыве Falcon 9 в сентябре 2016 года). Аналогично поступила индонезийская компания Telkom, заказавшая спутник Telkom-3S у европейской Thales Alenia Space. Из стран постсоветского пространства от сотрудничества с предприятиями Роскосмоса отказались Азербайджан (Orbital ATK) и Туркменистан (Thales Alenia Space). Новых зарубежных заказов у российских предприятий сейчас нет и, учитывая тенденции, вряд ли они появятся в обозримой перспективе.

Переломить ситуацию, в теории, можно, но для этого усилий одного Роскосмоса будет не достаточно. Во-первых, уже понятно, что стендовые испытания, проводимые на российских предприятиях, не позволяют выявить все ошибки и проблемы. Ужесточать процедуры испытаний можно, но гарантии надежности это не даст. Вместо этого следует изменить подход к проектированию, чтобы не допускать использования оборудования, не имеющего летной квалификации, при выполнении важных заказов – да и в остальных случаях оно должно по возможности дублироваться испытанными схемами. Во-вторых, государство должно активно заняться продвижением российской спутникостроительной отрасли на рынках развивающихся стран, т.е. в Африке и юго-восточной Азии. Помочь могли бы, как в случае с Анголой, кредиты государственных банков, покрывающие до 100% стоимости заказа. Аналогичным образом сейчас свои спутники продвигает Китай. В-третьих, самим предприятиям следует активнее продвигать свои разработки за границей.

Космическая лента

Обсудить

В начале 2018 года американская компания SpaceX завершает разработку своего основного изделия, которое принесло компании известность и успех – ракеты-носителя тяжелого класса Falcon 9. Уже этой весной должны начаться полеты этой ракеты в модификации «Блок 5», которая объявлена заключительным этапом модернизации. В результате проделанной работы SpaceX должна получить ракету с мощной первой ступенью, обеспечивающей эффективное многоразовое использование.

Первый полет Falcon 9 состоялся в 2010 году. Ракета в версии 1.0 использовала на первой ступени двигатели Merlin-1C, расположенные по сетке 3x3. Она могла выводить на орбиту около 10 т груза и совершила всего пять полетов, все они – по программе разработки грузового корабля Dragon. Для того, чтобы привлечь частных заказчиков, SpaceX решила модернизировать ракету с увеличением полезной нагрузки. Любопытно, что в двух полетах Falcon 9 v1.0 были предприняты попытки спасти первую ступень ракеты при помощи парашютов. Они окончились неудачно, и именно поэтому инженеры SpaceX выбрали реактивный способ возврата ступеней.

Версия 1.1 начала полеты в 2013 году. Она отличалась от от изначального Falcon 9 переходом на форсированные двигатели Merlin-1D и увеличением длины топливных баков. Увеличение запасов топлива позволило SpaceX начать первые испытания по спасению первой ступени при помощи реактивной посадки.

В 2013 году был представлен новый вариант ракеты – Falcon 9 FT (Full Thrust), также известный как Falcon 9 v1.2. Список изменений включал вновь увеличенную вторую ступень, использование переохлажденного кислорода и в очередной раз форсированные двигатели. В дальнейшем ракета Falcon 9 FT модернизировалась четыре раза, причем каждый этап этой модернизации назывался «блоком». Блоки 1-4 внедрялись в 2016-2017 годах, из них «Блок 3» стал первым, для которого который SpaceX использовала повторно первую ступень.

В конце 2016-начале 2017 года Илон Маск объявил, что Falcon 9 «Блок 5» станет финальной модификацией ракеты. Ее грузоподъемность увеличится в два раза по сравнению с оригинальной ракетой и составит 22,8 т (для одноразового варианта). Новая версия получит модернизированные двигатели и набор улучшений, необходимых для упрощения и удешевления повторного использования первой ступени. Помимо этого, SpaceX учла требования НАСА по сертификации носителя для пилотируемой программы.

Одно из заметных изменений «Блока 5» касается посадочных опор. Теперь команда рабочих сможет складывать опоры севшей ступени, тогда как сейчас их приходится полностью снимать. Помимо этого, теперь вся первая ступень ракеты будет покрываться теплозащитным покрытием, лучше защищающим ее от повреждений при возвращении в атмосферу. Алюминиевые решетчатые крылья, служащие для управления ориентацией при посадке, были заменены на более крупные титановые, уже опробованные в нескольких полетах в 2017 году.

В результате этих нововведений, по словам Илона Маска, период межполетного обслуживания первых ступеней должен сократиться до двух суток. Нужно понимать, что эта величина является теоретической, и означает она скорее низкие трудозатраты на обслуживание ступеней, чем реально планируемую частоту пусков. В таких частных полетах одних и тех же ракет просто нет необходимости. Заявленный ресурс первой ступени Falcon 9 «Блок 5» - не менее десяти полетов.

В соответствии с требованиями НАСА в конструкцию ракеты были внесены два изменения. Во-первых, SpaceX перепроектировала композитные шары-баллоны системы наддува, которые были причиной взрыва Falcon 9 в сентябре 2016 года. Во-вторых, изменены турбонасосы двигателей Merlin-1D. Ранее специалисты обнаружили, что на некоторых из них образуются трещины – как на возвращенных ступенях, так и после интенсивных испытаний на Земле. Хотя ранее SpaceX утверждала, что эти трещины не угрожают надежности двигателей, НАСА настояла на изменении конструкции турбонасосов.

В феврале 2018 года на испытательный полигон SpaceX в Макгрегоре (Техас) был доставлен для испытаний первый модуль первой ступени Falcon 9 «Блок 5». Он имеет заводской номер 1046, т.е. является 46-м модулем Falcon 9, произведенным SpaceX. Ожидается, что эта ракета должна будет вывести на орбиту бангладешский коммуникационный спутник Bangabandhu-1 в апреле 2018 года.

Согласно требованиям НАСА, до начала запусков корабля Dragon 2 с астронавтами на борту SpaceX должна выполнить не менее семи пусков Falcon 9 «Блок 5» в неизменном виде.

Обсудить

Наличие воды на Луне было подтверждено достаточно давно. В образцах грунта, доставленных с луны советской станцией «Луна-24», присутствовали частицы воды. Тем не менее, до 1990-х годов мировая наука считала Луну «сухой». В 1998 году зонд Lunar Prospector при помощи нейтронного детектора обнаружил на Луне следы водорода, что указывает на присутствие водяного льда. В 2005 году НАСА запустило пенетрационную миссию Deep Impact. После падения космического аппарата на Луну в поднявшемся облаке пыли телескопы зафиксировали частицы воды.

Наконец, в 2009 году был запущен американский лунный спутник LRO с нейтронным детектором LEND. По результатам работы этого детектора в ИКИ РАН была построена карта распространения воды на Луне. Оказалось, что содержимое водяного льда увеличивается к полюсам и особенно велико в затененных кратерах. Ученые объяснили такое распределение наличием «холодных ловушек» на полюсах – затененных кратеров, внутрь которых никогда не попадает солнечный свет. В таких местах всегда сохраняется низкая температура, и лед на поверхности может существовать в течение долгого времени, не сублимируя.

Новое исследование, основанное на анализе комбинированных данных нескольких миссий, предполагает, что вода может быть распространена на поверхности Луны даже шире, чем считалось ранее, но она находится в связанном состоянии, т.е. не формирует отдельные молекулы, а входит в состав молекул других минералов.

Исследование было опубликовано в журнале Nature Geoscience. Его автор Джошуа Бэндфилд из Института космической науки в Колорадо утверждает: «Мы обнаружили, что не имеет значения, в какое время суток и на какой широте происходят наблюдения: следы воды всегда присутствуют». Один из распространенных методов обнаружения воды – поиск ее спектра в отраженном свете Солнца. Воду можно обнаружить в инфракрасном свете на длинах волн около 3 мкм. Проблема заключается в том, что сама Луна, если она в достаточной степени нагрета, может излучать в этом диапазоне, а значит, чтобы отделить воду от фонового излучения, нужно очень точно знать температуру поверхности Луны. В своем исследовании американские ученые данные с инфракрасного спектрометра, установленного на индийском лунном спутнике «Чандраян» (Chandrayaan 1), наложили на данные о температуре Луны, собранные LRO.

Согласно полученной модели, вода на луне распространена достаточно широко, но присутствует там в виде гидроксильной группы (OH-). Гидроксогруппа является отрицательно заряженным ионом и обычно не существует сама по себе, а присоединяется к молекулам, имеющим положительный заряд. Таким образом, она является частью молекул минералов, составляющих грунт, а не формирует отдельные молекулы воды. Впрочем, даже целые молекулы H-OH могут включаться в сложные минеральные соединения в виде составных блоков.

В отличие от простого льда, связанная вода не является простым для добычи полезным ископаемым. Следовательно, добывать ее для снабжения гипотетической лунной станции не получится. Но важно отметить, что исследование не доказывает, что на Луне нет обычного водяного льда. Оно лишь позволяет скорректировать данные инфракрасных детекторов и объяснить присутствие воды за пределами «холодных ловушек». Картирование, проведенное LEND, остается в силе. Судя по всему, разобраться в проблеме лунной воды помогут только прямые исследования на поверхности спутника Земли. Они могут состояться только в следующем десятилетии. Новая стратегия НАСА, среди прочего, рассматривает возможность запуска тяжелого научного лунохода в 2020-х годах.

Ссылка: phys.org

Обсудить

В 2017 году американское космическое агентство формально объявило о переориентации свой работы с полета на Марс к возвращению на Луну. Марс остается в планах НАСА, но только в качестве отдаленной перспективы. 20 февраля и. о. директора НАСА Роберт Лайтфут вместе с бюджетным запросом на 2019 год представил общую концепцию того, как, по мнению Белого дома, должна развиваться американская космонавтика в следующем десятилетии. Видение программы, несомненно, будет меняться.

1. Высадка астронавтов на поверхность Луны должна состояться во второй половине – судя по всему, ближе к концу 2020-х годов. Полеты на Луну для выполнения запланированных исследовательских работ должны быть регулярными. До этого люди будут посещать окололунное пространство и жить на окололунной орбитальной станции. Постройки лунной базы в планах НАСА нет.

2. Окололунная станция, ранее известная как Deep Space Gateway, теперь называется «Лунная орбитальная платформа» (LOP-G, Lunar Orbiting Platform – Gateway). Ее первый двигательно-энергетический модуль должен быть запущен в 2022 году на коммерческой ракете-носителе. Ранее предполагалось, что он будет запущен в 2023 году на сверхтяжелой ракете SLS вместе с кораблем «Орион». Вероятно, НАСА хочет уже с первым «Орионом» запустить жилой модуль, чтобы астронавты могли работать в более-менее комфортных условиях.

3. Разработка жилого модуля продолжится в рамках программы NextSTEP, т.е. на коммерческих условиях. Участниками программы, которая сейчас находится на втором этапе, остаются компании Bigelow Aerospace, Boeing, Lockheed Martin, SNC, Orbital ATK.

4. Для разработки посадочных аппаратов для доставки на Луну грузов и, в дальнейшем, людей, НАСА также планирует обратиться к опыту коммерческих программ, да и от помощи международных партнеров отказываться не планирует. На первом этапе будет объявлен конкурс на создание малых посадочных аппаратов. В первой половине 2020-х должна начаться разработка тяжелых платформ, а к концу десятилетия они должны превратиться в пилотируемые взлетно-посадочные модули.

Пока что эта стратегия не дает ответов на многие вопросы, в том числе о финансировании. Многие эксперты верят, что следующая президентская администрация в США захочет пересмотреть политику НАСА. Но, несмотря на большое желание некоторых сил сохранить МКС, все понимают, что в следующем десятилетии астронавты должны наконец-то покинуть низкую околоземную орбиту. И за ее пределами минимальной достижимой задачей является окололунная орбитальная станция, а максимально достижимой – высадка на Луну или постройка там базы. Отказ от этих целей в пользу более амбициозных означал бы необходимость просидеть на МКС или ее замене до 2030-х годов, а также оставил бы без работы новую ракету SLS и корабль Orion, которые ценой огромных бюджетных потерь вот уже много лет разрабатываются компаниями Boeing и Lockheed Martin. Возвращение от марсианских планов к лунным – не просто каприз Трампа. Это необходимость, вызванная ограниченными финансово-технологическими возможностями и прагматическими интересами крупнейших подрядчиков. Поэтому в деталях планы, конечно, будут меняться, от высадки на Луну можно отказаться, «Лунную орбитальную платформу» можно переименовать в «Ворота на Марс», но отказ от станции как таковой крайне маловероятен.

Ссылка: spacenews.com

Обсудить

Ниже представлена таблица, отражающая стоимость разработки и пусков различных ракет по государственному заказу в России. Все работы по госзаказу осуществляются не по рыночным ценам, а по смете, включающей небольшую норму прибыли, т.е. приведенные цены близки к себестоимости. Источник информации – Единая информационная система в сфере госзакупок.

Известно, что стоимость «Протона-М» для коммерческих заказчиков составляет $65 млн. Обычно в такую базовую цену не включаются пусковые услуги.

Космическая лента

Обсудить

Маленький марсоход Opportunity, работающий на Марсе уже 14 лет, зимой 2018 года медленно движется по внутренней части западного склона кратера Эндевор. Район, в котором он находится, в НАСА называют Perseverance Valley – Долина Настойчивости. По словам ученых, работающих с Opportunity, это место существенно отличается от районов, по которым перемещался маленький марсоход в прошлом.

Особое внимание планетологов привлекли продольные полосы из песка, расположенные параллельно склону и разделенные полосами гравия различной ширины. Происхождение этой текстуры поверхности остается загадкой для ученых. Набор возможных объяснений включает воздействие ветра, воды и льда. Кроме того, неизвестно даже, являются эти образования древними или современными.

Как известно, в прошлом ось вращения Марса менялась. В некоторые периоды времени полюс находился ближе к современному экватору планеты, и в результате снег, выпадающий зимой на полюсах, раньше выпадал и в более южных регионах. Согласно одной из версий, полосы, заинтересовавшие ученых, образовались именно в такой период благодаря процессу морозного пучения, которое выталкивало на поверхность более крупные частицы грунта, и силам гравитации, которые сбивали их в полосы. Подобный процесс наблюдается в некоторых регионах Земли, в частности – на Гавайях.

В Долине Настойчивости присутствуют прорезанные песком скалы, поднимающиеся над стенами кратера, и поэтому, по мнению ученых, сортировку гравия можно также объяснить работой ветра. Однако поверхность кратера покрыта большим количеством обломков, выброшенных из свежих ударных кратеров, и эти обломки затрудняют изучение воздействия ветра.

15 февраля марсоход Opportunity отметил юбилей – 5000 марсианских дней работы. Несмотря на то, что многие инструменты аппарата уже вышли из строя, он продолжит выполнять свои функции в 2018 году, и ученые надеются, что им удастся узнать что-то новое о необычной текстуре пород в Долине Настойчивости.

Ссылка: www.jpl.nasa.gov

Обсудить

Руководство РКЦ «Прогресс» ждут перемены

Следственный комитет потребовал лишить полномочий главу самарского РКЦ «Прогресс» Александра Кирилина, который управляет предприятием с 2003 года. Следователи считают его ответственным за закупку гидравлического пресса по завышенной цене. Помимо этого, высокопоставленные сотрудники предприятия обвиняются в двойной оплате одних работ.

Подобные злоупотребления обычно являются признаками «откатов», крайне распространенных на государственных предприятиях в России. Однако нужно отметить, что речь также может идти о простой хозяйственной деятельности, для анализа которой у следователей в действительности нет компетенции. Например, само государство несколько раз переплачивало при строительстве космодрома Восточный, да и Роскосмос дважды заплатил за работу по созданию лабораторного модуля «Наука» для МКС: сначала за подготовку к запуску в 2014 году, а затем – за ремонт. Роскосмос мог бы потребовать у предприятий выполнить ремонт за свой счет, несмотря на вскрывшиеся проблемы, но это привело бы только к тому, что «Наука» превратилась бы в музейный экспонат.

РКЦ «Прогресс» занимается созданием ракет «Союз-2» и «Союз-ФГ», которые используются для запуска грузовых и пилотируемых кораблей на МКС, а также продаются Arianespace для осуществления запусков с космодрома Куру. «Союзы-2» применяются для запуска большей части военных аппаратов и для выведения на орбиту некоторых коммерческих спутников. После резкого уменьшения производства «Протонов-М» и возникновения тяжелых финансовых проблем в Центре им. Хруничева, самарское предприятие стало основным производителем средств выведения в России. В этой ситуации очень важно проследить, чтобы смена руководства предприятия не привела к возникновению проблем на производстве. В противном случае ситуация в российской космонавтике станет катастрофической.

Опубликован законопроект о бюджете НАСА на 2019 год

В начале этой недели президентская администрация в США опубликовала законопроект о бюджете НАСА на 2019 год. Он, несомненно, будет меняться при прохождении через парламент, но некоторые ключевые идеи можно отметить уже сейчас.

Согласно презентации, опубликованной на сайте агентства, первый пуск ракеты-носителя SLS с новым кораблем «Орион» состоится не в конце 2019, а в 2020 году. Первый пилотируемый полет все еще запланирован на 2023.

Финансирование исследований планет и пилотируемой космонавтики, согласно плану администрации, будет расти. Финансирование астрономии должно снизиться. В связи с этим предполагается отменить создание космической обсерватории WFIRST. Вполне возможно, что Конгресс с этим решением не согласится.

С 2025 года американский сегмент МКС может быть передан под управление частным компаниям. Это позволит НАСА сосредоточиться на продвижении космической деятельности за пределами низкой орбиты Земли.

В 2018-2019 годах НАСА может начать новый конкурс среди коммерческих компаний, на этот раз – на создание легкой посадочной платформы для доставки грузов на Луну. Такие платформы разрабатываются двумя бывшими участниками конкурса Lunar Google X-Prize, компаниями Astrobotic и Moon Express. В начале и середины 2020-х планируется разработать посадочные платформы среднего и тяжелого класса, в т.ч. для доставки на поверхность Луны астронавтов. За эту работу могут взяться Blue Origin и ULA. В планах агентства –научные посадочные станции для исследования Луны.

Космическая лента

Обсудить