Консультативный совет НАСА рекомендовал американскому космическому агентству не сертифицировать ракету Falcon 9 для пилотируемых полетов до того, как будет завершено исследование композитных баллонов системы наддува второй ступени ракеты, известных как COPV.

Из-за разрушения COPV произошел взрыв Falcon 9 на стартовой площадке 1 сентября 2016 года. Согласно результатам проведенного расследования, во время заправки второй ступени окислителем жидкий кислород попал между слоями композитных материалов и алюминия и воспламенился из-за трения. После аварии SpaceX изменила процедуру заправки и согласилась перепроектировать COPV в финальной версии Falcon 9, которая будет использоваться для запуска пилотируемых кораблей Dragon 2.

Консультативный совет НАСА настаивает, что независимые испытания новых баллонов должны быть завершены до того, как система Falcon 9/Dragon 2 начнет использоваться для ротации экипажей МКС.

НАСА и SpaceX работают над альтернативным проектом баллонов для гелия, в котором не используются композитные материалы. Этот проект пригодится в случае провала испытаний новых COPV, однако для «альтернативных» баллонов придется дополнительно перепроектировать удерживающую их структуру внутри бака жидкого кислорода.

В отчете консультативного совета присутствуют претензии и к проекту корабля Starliner компании Boeing, а также общие претензии к обоим проектам одновременно. Ревизоры, в частности, отмечают, что ни одна из компаний не может достичь рекомендованных значений по показателю шансов потери экипажа LOC (Loss of crew). Теоретическая вероятность гибели астронавтов в полете к МКС и обратно не должна превышать 1/270 (или 1/200 с нефатальными ранениями), а во время взлета и посадки – 1/500. Для сравнения, у шаттлов этот показатель составлял 1/90.

Требования Консультативного совета носят рекомендательный характер и не обязательно должны исполняться НАСА. В то же время, считается, что новый сдвиг в графике сертификации пилотируемых кораблей – теперь она перенесена на 2019 год – связан с ужесточившимися требованиями НАСА к подрядчикам по обеспечению безопасности их кораблей.

Ссылка: spacenews.com

Обсудить

Новозеландско-американская компания RocketLab возобновила подготовку к летным испытаниям сверхлегкой ракеты «Электрон» (Electron). «Электрон» – двухступенчатая ракета-носитель сверхлегкого класса, использующая кислородно-керосиновые двигатели «Резерфорд» (Rutherford) собственной разработки. Она будет способна выводить 150 кг полезного груза на солнечно-синхронную орбиту высотой 500 км или до 225 кг на низкую опорную орбиту. Диаметр ракеты составляет 1,2 м, высота – 17 м. Стартовая площадка расположена на полуострове Махиа на юго-восточном побережье Северного острова Новой Зеландии. Это место было выбрано ради возможности запуска в широком диапазоне орбит, включая солнечно-синхронные, с наклонениями от 39 до 98 градусов.

Заявленная коммерческая стоимость одной миссии ракеты «Электрон» составляет $4,9 млн. После переноса головного офиса в США компания Rocket Lab получила венчурный контракт от НАСА на $6,9 млн, а суммарные инвестиции в нее в настоящий момент составляют около $150 млн.

Первая попытка пуска ракеты 25 мая 2017 года окончилась неудачно. У ракеты возникли проблемы с управлением ориентацией. Получение телеметрической информации от нее прекратилось на высоте 224 км.

Второй пуск «Электрона» откладывался неоднократно с ноября, прежде чем ракета была установлена на стартовом столе в декабре 2017 года. Испытания переносились ежедневно до приближения праздников, после чего были перенесены на январь. Как следует из нового заявления компании, попытки произвести пуск «Электрона» возобновятся в субботу 20 января. Стартовое окно будет активно с 4:30 мск до 8:30 мск каждый день до 28 января.

Полезной нагрузкой в этой миссии станут три «кубсата». Если испытания пройдут успешно, то в конце первого квартала 2018 года «Электрон» будет использован для запуска лунной станции MX-1E от компании Moon Express. Эта миссия разрабатывается в рамках конкурса Google Lunar X-PRIZE. MX-1E должен будет доставить на Луну небольшой луноход и несколько приборов от коммерческих заказчиков Moon Express.

Ссылка: spacenews.com

Обсудить

Ученые давно перестали считать Марс сухой планетой. Присутствие на нем водяного льда было подтверждено в прошлом десятилетии. Дальнейшие исследования показали, что запасы льда под поверхностью Марса достаточно велики – по некоторым подсчетам, растопленная вода могла бы покрыть всю планету глобальным океаном глубиной в 1-2 м. Но у ученых остается два вопроса, важных с точки зрения возможности использования этого льда людьми. Во-первых, на какой глубине находится лед? Во-вторых – в какой форме? Лед может залегать слоями, либо быть смешан с породами, как застывшие грунтовые воды, либо частицы воды могут находиться в связанном состоянии внутри молекул горных пород.

Согласно новому исследованию, которое было опубликовано в журнале Science, ученым удалось найти восемь мест обнажения слов льда на крутых эродированных склонах в различных регионах Марса. Сделать это удалось благодаря снимкам камеры высокого разрешения HiRISE, установленной на научном спутнике Марса MRO. Данные подтвердили спектрометр CRISM и термоэмиссионная камера THEMIS зонда Mars Odyssey. Угол наклона изученных восьми склонов превышает 55 градусов. Они расположены в северном и южном полушариях Марса выше 55-58 градусов северной и южной широты.

По мнению планетологов, отложения сформировались в далеком прошлом из спрессованного снега. Он образовал достаточно чистые и мощные слои льда, отделенные от остальных пород слоями сцементированных льдом пород толщиной 1-2 м. Полученные стратиграфические данные можно будет использовать для изучения истории геологического развития Марса, а сам лед будет легко доступен для использования людьми.

Первоначально существование льда на Марсе предполагалось благодаря исследованиям американского спутника Mars Odyssey, спектрометры которого обнаружили следы льда в молодых кратерах. Эти данные согласовались с радарными измерениями, сделанными европейским научным спутником Mars Express. В 2008 году посадочная станция НАСА Phoenix подтвердила существование водяного льда на 68 градусах с. ш.

Планетологи пока не знают, что инициировало появление провалов, которые они изучают. Но они предполагают, что рост провалов продолжается благодаря сублимации обнаженного водяного льда в условиях разряженной марсианской атмосферы. В некоторых из них мощность слоя льда превышает 100 м. Ученые уверены, что обнаруженное ими вещество является водяным льдом, и речь не идет о тонком слое инея, покрывающем поверхность.

Ранее подповерхностные слои льда на Марсе были картированы при помощи радара на спутнике MRO. Радарные данные свидетельствуют о том, что лед приближается к поверхности менее чем на 10 м, однако более точно определить глубину залегания не позволяет разрешение радара. Новое исследование склонов вместе с данными из ударных кратеров позволяет говорить, что лед начинается на глубине 1-2 м от поверхности планеты.

Водяной лед, выраженный в отдельных слоях вблизи поверхности планеты – ценный ресурс, который, несомненно, упростит освоение планеты. Его можно будет использовать для производства воды, воздуха и ракетного топлива. Даже если первые полеты к Марсу не будут полагаться на использование местных ресурсов, доступный лед позволит значительно ускорить создание постоянно обитаемой станции на этой планете.

Недавнее исследование, основанное на данных европейского спутника TGO миссии Exomars-2016, свидетельствует, что в ходе одного годового полета к Марсу и обратно космонавт получит дозу облучения галактическими космическими лучами, соответствующую 60% от максимально допустимой. Эти данные согласуются с исследованием НАСА, для которого были использованы данные миссии MSL/Curiosity. Американское исследование утверждало, что за 12 месяцев пути и 9 месяцев на поверхности Марса астронавт получит предельно допустимую дозу облучения. Следует отметить, что оба исследования не предполагают использование каких-то мер радиационной защиты. Интенсивность галактических космических лучей (ГКЛ) также зависит от активности Солнца, которая меняется по 12-летнм циклам: чем активнее Солнце, тем эффективнее солнечный ветер задерживает ГКЛ. На поверхности Марса, по данным Curiosity, люди будут получать дозу облучения примерно такую же, как на МКС, т.е. в 3-5 раз ниже, чем в открытом космосе. Космические лучи там с одной стороны блокируются самой планетой, а с другой задерживаются ее слабой атмосферой.

Ссылка: sciencemag.org

Обсудить

Компания SpaceX вплотную приблизилась к началу полетов новой сверхтяжелой (или просто тяжелой – смотря как подходить к классификации) ракеты Falcon Heavy. Ее появление станет вторым глобальным достижением компании. В прошлом году доля SpaceX на рынке коммерческих запусков достигла 45%. Таким образом, она не просто заняла значимую долю, а стала крупнейшим оператором запусков в мире, оттеснив французскую Arianespace и американскую (принадлежит московскому Центру им. Хруничева) ILS. Falcon Heavy же станет самой тяжелой ракетой из существующих сейчас в мире.

Согласно официальному сайту SpaceX, ракета-носитель Falcon Heavy будет способна выводить до 63,8 т на низкую орбиту Земли и до 26,7 т на геопереходную орбиту. Однако одноразовую версию мы вряд ли когда-нибудь увидим в полете, а многоразовом варианте она будет выводить только 8 т на ГПО. Основные потери при этом возникают при возвращении центрального блока ракеты. Кроме того, в первом пуске, по словам основателя компании SpaceX Илона Маска, двигатели первой ступени будут дросселированы до 92%. Не нужно также забывать, что характеристики на сайте приведены для финальной версии ракеты на основе модулей 1-2 ступеней в модификации Block 5. Сейчас SpaceX использует модификацию Block 4, а два боковых модуля Falcon Heavy используются повторно с 2016 года (Block 3). Соответственно, характеристики ракеты в первом пуске будет ниже, чем указано на сайте. Однако это не помешает ей стать самой тяжелой из существующих. Ближайшие конкуренты (американская Delta IV Heavy, китайская CZ-5) выводят менее 30 т на низкую орбиту Земли.

Ранее центральный и боковые модули по отдельности прошли статические огневые испытания на полигоне SpaceX в техасском Макгрегоре. Основное беспокойство инженеров вызывает одновременная работа трех модулей: полноценно протестировать ее на Земле не представляется возможным, и некоторые неучтенные нагрузки могут привести к аварии. Именно поэтому огневые испытания на стартовой площадке будут иметь большое значение.

Вывоз ракеты и установка на стартовый стол площадки 39А на мысе Канаверал состоялись 8 января. Следующим шагом в подготовке к запуску станет примерка и заправка. Если она пройдет успешно, то огневые испытания могут состояться уже сегодня после 21:00 мск. В отличие от Falcon 9, прожиг двигателей будет длиться не 3-7, а 12 секунд. Тест должен подтвердить не только устойчивую одновременную работу всех 27 двигателей. Проверке также подвергаются все электрические соединения и шины для обмена данными, а также системы стартового комплекса, в т. ч. заправочные. Чтобы избежать возможного повреждения крепления при резком напряжении, запуск двигателей будет производиться не одновременно, а попарно с небольшой задержкой, как это делалось у космических шаттлов.

В зависимости от того, какие сложности возникнут или не возникнут при подготовке, сами огневые испытания могут сдвигаться как минимум до конца недели. После прожига ракета будет снята со стартового стола и возвращена в ангар.

Если анализ данных подтвердит корректную работу всех систем, повторный прожиг проводиться не будет, и пуск Falcon Heavy состоится в конце месяца (не ранее 25 января). В противном случае он может быть перенесен на февраль, поскольку на 30 января назначен запуск люксембургского коммуникационного спутника SES-16 на ракете-носителе Falcon 9. Он будет проводиться со стартового стола №40, но SpaceX пока не сформировала две отдельные команды для одновременных запусков.

Президент компании SpaceX Гвен Шотвелл в специальном заявлении 9 января подчеркнула, что миссия SES-16 не будет перенесена в связи неудачным запуском военного спутника Zuma на прошлой неделе. Это дает косвенное, но веское подтверждение того, что вторая ступень Falcon 9 при запуске Zuma отработала полностью штатно. Но точно мы это будем это знать, если в будущем Минобороны США продолжит сотрудничество со SpaceX.

Полезной нагрузкой Falcon Heavy в первом полете станет автомобиль Tesla Roadster Илона Маска. Он сыграет роль оригинального массового макета, который вместе с третьей ступенью ракеты будет выведен на межпланетную траекторию. Roadster окажется на орбите Солнца и приблизительно через два года пролетит в относительной близости Марса.

Космическая лента

Обсудить

Американская компания Blue Origin разрабатывает кислородно-метановый двигатель BE-4 с 2011 года. Он будет использоваться на первой ступени тяжелой ракеты New Glenn, первый пуск которой должен состояться в 2020 году. Также ожидается, что BE-4 в качестве двигателя первой ступени для ракеты Vulcan выберет компания ULA.

BE-4 – двигатель замкнутого цикла. Он имеет проектную тягу 250 т и предназначен для многоразового использования. Blue Origin намерена использовать первую ступень ракеты New Glenn до 100 раз. Для сравнения, первая ступень Falcon 9 компании SpaceX будет использоваться 10 раз, а метановый двигатель Raptor имеет тягу 170 т.

Первое видео испытаний BE-4, опубликованное в прошлом году, длилось 3 секунды, а тяга двигателя составила 50% от номинальной. Вчера Blue Origin опубликовала новое видео, свидетельствующее о достигнутом прогрессе. На нем прожиг двигателя длится около 10 секунд. В ходе испытания BE-4 дросселируется до различных показателей тяги. Как отмечает Blue Origin в своем комментарии, инженерам удалось достичь и превысить целевое значение удельного импульса двигателя.

Обсудить

Пуск ракеты Falcon 9 с секретным спутником Zuma 8 января 2018 г. мог завершиться неудачей. Хотя официального заявления на эту тему не было, многочисленные источники в различных СМИ подтверждают, что связь со спутником после выведения установить не удалось. Вероятно, он не отделился от второй ступени и вместе с ней сошел с орбиты.

Космический аппарат Zuma разрабатывался компанией Northrop Grumman по заказу ВВС США в обстановке строгой секретности. Впервые о нем стало известно широкой публике в середине октября 2017 года – всего за месяц до предполагаемого запуска. Первоначально предполагалось, что спутник отправится на орбиту в ноябре. Позднее запуск был перенесен из-за обнаруженных в ходе предстартовой подготовки проблем с головным обтекателем ракеты.

Нет никакой информации о целях и задачах этого космического аппарата. Известно, что он выводился на низкую орбиту Земли, и масса аппарата не слишком велика. В противном случае для спасения первой ступени ракеты использовалась бы плавучая платформа. По данным издания Wall Street Journal, аппарат мог стоить миллиарды долларов. Это необычно много по любым меркам. Обычно даже тяжелые геостационарные спутники связи стоят несколько сотен миллионов долларов. Сравнимую с ними стоимость имеет научно-исследовательская миссия InSight, которую НАСА в этом году запустит на Марс.

Пуск Falcon 9 состоялся 8 января в 4:00 мск. Первая ступень отработала штатно и совершила мягкую посадку на посадочную площадку на мысе Канаверал. О работе второй ступени достоверной информации нет. Представитель SpaceX заявил, что, согласно имеющимся у компании данным, обе ступени ракеты отработали штатно. Но результаты миссии и SpaceX, и Northrop Grumman отказываются комментировать, ссылаясь на ее секретность.

По неподтвержденным данным, неполадки возникли в системе отделения космического аппарата от второй ступени ракеты. Предположительно, в данной миссии использовалась не серийный адаптер Falcon 9, а система, специально разработанная для спутника в Northrop Grumman.

Согласно принятой классификации, система разделения является частью ракеты-носителя, а не космической головной части. Авария этой системы означает неудачу на этапе выведения и засчитывается в статистику Falcon 9. С другой стороны, данный случай не является показательным для надежности Falcon 9, поскольку, по сути, авария случилась с уникальной модификацией ракеты, которая не будет использоваться. Но SpaceX объединяет полеты всех модификаций Falcon 9 в общую статистику. Сложившаяся ситуация хорошо демонстрирует несовершенство существующей модели расчета статистики надежности ракет. Еще один показательный случай – авария Falcon 9 на стартовой площадке 1 сентября 2016 года. Поскольку ракета взорвалась во время огневых испытаний за несколько дней до запуска, это событие не вошло в статистику ее полетов, хотя оно объективно свидетельствовало о конструктивных проблемах Falcon 9.

На фото – предполагаемый сброс топлива второй ступенью Falcon 9. Сброс топлива является штатной операцией, выполняемой при управляемом сходе с орбиты.

Ссылка: www.wsj.com

Обсудить

Разработка двух новых частных пилотируемых кораблей в США находится на заключительном этапе. Корабли Boeing Starliner и SpaceX Dragon 2 создаются частными компаниями по заказу НАСА с 2011 года. Американское космическое агентство курирует и контролирует эту работу по программе Commercial Crew Development.

Согласно актуальной версии расписания CCDev, оба корабля должны совершить короткие испытательные полеты в космос с астронавтами на борту в конце 2018 года, а со следующего года они должны начать регулярные полеты на МКС для обеспечения ротации экипажа станции. В связи с этим Роскосмос сократил заказ пилотируемых кораблей «Союз МС» с четырех в 2018 году до двух в 2019.

Согласно отчеты НАСА от 4 января, в этом году Boeing продолжит сборку трех командных отсеков кораблей Starliner на специально построенном для этих целей производстве во Флориде. Ранее созданный конструкторский макет корабля будет использован для различных испытаний, включая тесты системы обеспечения температурного режима, системы жизнеобеспечения и прожиги двигателей, а также вакуумные и электромагнитные испытания. Отдельный набор испытаний планируется для спасательного скафандра, который будет применяться на кораблях компании Boeing. Его ждет серия тестов и симуляций, необходимых для сертификации в НАСА.

У SpaceX в производстве находится сразу шесть кораблей Dragon 2. Квалификационный конструкторский макет с прошлого года проходит интенсивные испытания, которые должны завершиться в первой половине 2018 года. В течение всего года продолжатся испытания систем обеспечения жизнедеятельности и контроля температурной среды. В командном отсеке корабля, который будет использован для первой беспилотной демонстрационной миссии, смонтирована и подключена бортовая авионика. Завершена интеграция герметичного отсека со служебной секцией корабля. Скафандр SpaceX, как и у компании-конкурента, должен будет пройти серию сертификационных испытаний. Сейчас в производстве находится скафандры для четырех первых астронавтов НАСА, которые полетят в космос на корабле Dragon 2. Скафандры SpaceX не являются универсальными и будут создаваться для каждого астронавта отдельно.

Формально первые беспилотные полеты Dragon 2 и Starliner должны состояться во 2 и 3 квартале года, а первые пилотируемые полеты, соответственно, в 3 и 4 квартале. К сожалению, расписание обслуживания Международной космической станции свидетельствует о том, что беспилотные полеты двух кораблей будут перенесены на вторую половину года, а шансы увидеть пилотируемый полет хотя бы одного из них в этом году остаются, но не очень велики. В связи с этим, чтобы не оставить МКС без экипажа, РКК «Энергия» вынуждена форсировать производство корабля «Союз МС-14», запуск которого ранее планировался в 2020 году. Теперь он перенесен на сентябрь 2019 года. НАСА не подписало контракт с Роскосмосом на доставку астронавтов на МКС в 2019 году, но американский астронавт получит место на этом корабле в рамках сделки по урегулированию долга РКК «Энергия» перед Boeing. До этого на корабле «Союз МС-12» в марте 2019 года к МКС отправится один астронавт НАСА, а на «Союз МС-13» места получат астронавт НАСА и астронавт ЕКА (по квоте НАСА).

Космическая лента

Обсудить