Старт очередной миссии НАСА по исследованию Марса – она пока не получила собственное название – назначен на июль 2020 года. Аппарат разрабатывается на той же платформе, что и успешно работающий уже 4,5 года марсоход Curiosity. Сообщалось, что это позволит сократить стоимость и время разработки аппаратуры, однако, по последним данным, стоимость миссии 2020 года уже превысила 2,1 млрд долларов.

Задачи нового марсохода – исследование геологического строения в районе посадки и поиск следов древней жизни на Марсе. Кроме того, он будет отбирать и оставлять на поверхности планеты образцы, которые в перспективе будут отправлены на Землю другим космическим аппаратом.

На данный момент список потенциальных мест посадки марсохода сокращен до трех.

1. Холмы Колумбия в кратере Гусева.

Кратер Гусева – это 166-километровый кратер, расположенный недалеко от экватора в южном полушарии Марса. Известен он в первую очередь тем, что в нем в 2004-2010 годах работал маленький марсоход Spirit. Главным его открытием стало обнаружение свидетельств того, что в древнем прошлом Марса с холмов Колумбия в кратер стекали горячие минеральные источники, вода из которых образовала мелкое озеро. В то же время, сейчас никаких свидетельств воды он там не нашел.

2. Кратер Джезеро (Jezero) неподалеку от экватора Марса.

Ученые считают, что 3,5 млрд лет назад он пережил как минимум два периода обводнения, разделенных периодом засушливого климата (подробнее). Если они правы, следы древней микробной жизни можно искать в озерных отложениях этого кратера.

3. Равнина Большой Сирт (Syrtis Major) на северо-востоке Марса.

Большой Сирт – регион с темной поверхностью, который представляет собой древний щитовой вулкан. Подземные источники тепла, вызванные вулканической активностью, должны были создавать горячие гейзеры и плавить лед на поверхности. В горячей воде на контакте с минералами этого региона когда-то могла существовать жизнь.

Ссылка: www.nasa.gov

Обсудить

1. NanoRacks планирует установить на МКС частный шлюз в 2019 году.

Американская компания NanoRacks, зарабатывающая на запусках микроспутников с борта МКС, получила от разрешение на реализацию нового проекта – установку постоянно действующего шлюза. Этот шлюз будет использоваться для проведения экспериментов по заказу частных компаний и пакетных запусков «кубсатов».

О достижении соглашения с НАСА, которое стремится постепенно передать инициативу в работе на низкой орбите Земли частным компаниям, NanoRacks объявила в понедельник 6 февраля. Для реализации этого проекта компания заключила соглашение о партнерстве с корпорацией Боинг. Он разработает и построит для шлюзового модуля стыковочный механизм, а также поможет в поиске клиентов. Инвестиции Боинга оцениваются в 15 млн долларов.

На данный момент для запуска микроспутников-«кубсатов» с борта станции NanoRacks использует шлюзовую камеру, установленную в японском модуле «Кибо». Этот шлюз открывается в среднем десять раз в год. Половина работ осуществляется по японской научной программе, а остальные распределяются НАСА между партнерами, включая космические агентства стран-участников программы МКС и частные компании наподобие NanoRacks. Японская камера довольно мала. Собственный модуль NanoRacks будет примерно в пять раз больше, и с помощью дополнительной пусковой системы он сможет обеспечивать запуск до 192 «кубсатов» за раз.

Вероятнее всего, шлюзовой модуль будет доставлен на станцию в негерметичном «багажнике» корабля Dragon и затем при помощи руки-манипулятора он будет пристыкован к модулю Tranquility («Спокойствие»). Это событие запланировано на 2019 год.

2. Германское космическое агентство подтвердило намерение запустить в космос оранжерею в этом году.

Весной в Германии должна быть завершена сборка летного образца научного спутника Eu:CROPIS. Целью миссии является экспериментальное изучение развития растений во внеземных условиях.

Космический аппарат будет находиться на 600-километровой орбите Земли в течение года. Первую половину срока он будет вращаться с небольшой скоростью, симулируя гравитацию на лунной поверхности (0,16 g), вторые полгода – на увеличенной скорости для симуляции условий Марса (0,38 g). Внутри аппарата в герметичном отсеке под давлением 1 атм будет расположена оранжерея, в которой ученые надеются вырастить космические томаты. Наблюдать за их развитием будут сразу 16 камер.

Германские ученые намерены использовать симбиотическую взаимосвязь между одноклеточными водорослями (эвгленами) и бактериями для снабжения растений питательными веществами. Периодически на грядку будет подаваться синтетическая моча, пропущенная через очистные фильтры, которые связаны с колонией микроорганизмов. Эвглены будут расщеплять аммиак до нитритов, а затем – до нитратов, освобождая его от токсичных для растений элементов. Нитраты затем будут подаваться в качестве удобрения томатам.

Запуск аппарата запланирован на конец 2017 года на ракете-носителе Falcon 9. Нельзя исключать того, что он будет перенесен на начало 2018 года.

Обсудить

Планетологи уже много лет имеют дело с серьезным парадоксом. Как широко известно, в далеком прошлом – около 3,5 млрд лет назад – поверхность Марса была покрыта реками и морями. Это подтверждается многочисленными свидетельствами: высохшими руслами, озерами и найденными там донными и озерными отложениями. В то же время, в те времена Солнце давало примерно на треть меньше тепла, чем сейчас. При этом даже в наши дни температура на Марсе очень редко поднимается выше нуля градусов, а значит, вода на поверхности планеты не могла бы существовать продолжительное время, даже обладай Марс плотной атмосферой.

Согласно общепринятой климатической модели, миллиарды лет назад температура Марса могла быть выше за счет парникового эффекта. Обеспечить его могла атмосфера с высоким содержанием углекислого газа.

В воде углекислый газ взаимодействует с положительно заряженными ионами магния и железа с образованием карбонатных минералов. Другие минералы, найденные на Марсе, свидетельствуют о присутствии этих ионов. А судя по наличию магнетита и глинистых минералов, водная среда на Марсе не была слишком кислой, т.е. не должна была растворить карбонаты. Поэтому ученые уже долгое время ищут свидетельства присутствия на Марсе карбонатных пород, которые обычно образуются при взаимодействии с диоксидом углерода.

С начала XXI века поверхность Марса изучалась различными спектрографами с находящихся на его орбите космических аппаратов. Они нашли значительно меньше признаков карбонатных пород, чем ожидали планетологи. В связи с этим было выдвинуто предположение, что поискам мешают песок и пыль, покрывающие коренные породы.

В августе 2012 года на планету приземлился марсоход Curiosity. Вот уже 4,5 года он изучает кратер Гейла, в котором в далеком прошлом существовало озеро. «Мы были сильно удивлены отсутствием осадочных пород в образцах, которые исследовал марсоход». – пояснил Томас Бристоу, исследователь из Исследовательского центра НАСА им. Эймса, работающий с прибором CheMin (исследование химического и минералогического состава пород) на Curiosity. – «Было бы чрезвычайно сложно получить жидкую воду, даже если бы в атмосфере древнего марса было в сто раз больше углекислого газа, чем мы можем предполагать по имеющимся минеральным свидетельствам».

CheMin способен определять карбонатные минералы, если их содержание превышает несколько процентов от состава породы. Но с 2012 года ни в одном из образцов пород со дна древнего озера прибор не смог с уверенностью зафиксировать эти минералы.

Существует много свидетельств того, что в прошлом атмосфера Марса была гораздо плотнее, чем сейчас. В новой статье, которая опубликована в журнале Proceedings of the National Academy of Science, Бристоу с коллегами пытается определить максимальное количество углекислого газа в атмосфере древнего Марса, которое согласуется с известными данными. По их данным, в период существования озера в кратере Гейла количество углекислого газа в атмосфере не должно было превышать нескольких десятков мбар. Давление современной атмосферы Марса составляет менее 10 мбар. Она состоит из углекислого газа на 95%.

Пока что ученые не могут создать непротиворечивую климатическую модель, которая объяснила бы достаточно высокую температуру воздуха для существования жидкой воды на поверхности древнего Марса. Согласно одной модели, плотную атмосферу мог обеспечить углекислый газ с примесью молекулярного водорода, однако непонятно, как такая атмосфера могла оставаться стабильной.

Ссылка: www.nasa.gov

Обсудить

Это дюнное море находится вблизи подножья северной полярной шапки Марса. Источником материала, из которого формируются дюны, могут быть слои выветриваемого грязного льда. Фотография была сделана камерой HiRISE космического аппарата MRO (Mars Reconnaissance Orbiter) во время летнего сезона в северном полушарии планеты, а потому дюны не покрыты снегом.

Дюны, которые расположены ближе к полярной шапке, являются длинными и параллельными. Эти особенности указывают на наличие сильных и стабильных ветров, дующих с полюса.

Повторные наблюдения позволили зафиксировать заметные изменения в форме дюн в некоторых районах, что еще раз указывает на существование активных процессов на поверхности Марса.

Ссылка: www.nasa.gov

Обсудить

Компания SpaceX на полигоне в техасском Макгрегоре провела статические огневые испытания (фото выше) первой ступени ракеты, использовавшейся в миссии по снабжению МКС CRS-8 в апреле 2016 года. Эта же ступень в начале весны будет использована для запуска спутника SES-10, который станет третьим по счету запуском компании с сегодняшнего дня и четвертым в этом году.

На середину февраля запланирован запуск грузового корабля Dragon к МКС, миссия CRS-10. Огневые испытания ракеты на старте состоятся «не ранее чем» 8 февраля.

В конце месяца стоит ожидать многократно переносившегося запуска спутника EchoStar 21, в котором будет использована одноразовая ракета (т. е. без возврата первой ступени).

В марте должен состояться запуск SES-10, первый случай повторного использования космической ракеты-носителя в истории.

Космическая лента

Обсудить

Американская межпланетная исследовательская станция «Кассини» с ноября 2016 года находится на полярной орбите Сатурна и на каждом витке вокруг него пролетает вблизи колец. Вчера на сайте НАСА были опубликованы новые фотографии, на которых запечатлены кольца A и B с рекордным количеством видимых деталей.

Эти фотографии дадут ученым возможность изучить элементы колец, известные как «спицы» (straw) и «завихрения» (propellers). Образование первых связано со слипанием частиц в кольцах, вторых – с воздействием уже сформировавшихся мини-спутников. Эти элементы были обнаружены еще в предыдущие годы, причем «спицы» – еще на фотографиях «Вояджера», но только нынешние снимки позволяют рассмотреть детали размером от 550 м.

Во время подлета к Сатурну в 2004 году «Кассини» сближался с кольцами на более близкое расстояние, чем сейчас, однако по качеству сделанные тогда снимки сильно уступают нынешним. Космический аппарат пролетал мимо теневой стороны колец, и, кроме того, специалисты были вынуждены использовать для съемки маленькую экспозицию, чтобы свести к минимуму размытие из-за скорости движения зонда. В результате фотографии получились темные и зашумленные.

На первой фотографии показано кольцо A Сатурна с плотной волной (слева), которая находится в 134,5 тысячах км от планеты. Этот элемент кольца наполнен возмущениями, которые названы «спицами». Сама волна образовалась за счет гравитационного воздействия спутников Янус и Эпиметий. В правой части снимка преобладают волны, вызванные недавним прохождением спутника Пан.

Второе и третье фото – внешние регионы кольца B, снятые с рекордным разрешением. На четвертом фото вновь изображен регион кольца A.

Ссылка: www.nasa.gov

Обсудить

В 2017 году в США завершается разработка и продолжается постройка сверхтяжелой ракеты SLS, первый пуск которой намечен на ноябрь 2018 года. SLS в модификации Block 1 будет способна вывести до 70 т на низкую орбиту Земли. В своей первой миссии она запустит пилотируемый корабль «Орион» без астронавтов на борту в первый испытательный полет вокруг Луны.

Жизнь 70-тонной версии SLS окажется очень недолгой, и после 2018 года ее использовать не планируется. С начала 2020-х годов НАСА намерено начать эксплуатацию версии Block 1B грузоподъемностью 105 т. Она будет отличаться от первой версии новой верхней ступенью – Exploration Upper Stage, EUS. SLS Block 1 в качестве верхней ступени использует адаптированную версию верхней ступени ракеты Delta IV, известную как ICPS.

Разработка EUS началась более двух лет назад. В январе 2017 года в американском космическом агентстве завершилась защита предварительного проекта ступени (Preliminary Design Review). Теперь разработчики приступят к разработке материалов и созданию элементов конструкции. Полномасштабное производство EUS начнется после завершения фазы Critical Design Review, следующего этапа в американской системе проектирования.

На EUS будет установлено четыре кислородно-водородных двигателя RL10C-3 производства Aerojet Rocketdyne, во многом аналогичные двигателям RL10C-1 разгонного блока Centaur. Их тяга составляет 101,8 кН (10,4 тс), удельный импульс – 449,7 с. Двигатели EUS будут поддерживать не менее трех включений с перерывами до 5 суток. Диаметр водородного бака EUS составляет 8,4 м, диаметр кислородного бака – 5,5 м.

Надежность и эффективность верхней ступени очень важны для SLS, поскольку эта ступень одновременно отвечает как за набор первой космической скорости и выход на опорную орбиту, так и за отправку космического аппарата за пределы орбиты Земли.

О рассматриваемых в НАСА схемах первого пилотируемого колета к Луне можно почитать здесь.

Ссылка: parabolicarc.com

Обсудить