Американкий марсоход Curiosity находится в кратере Гейла на Марсе с августа 2012 года. Один из инструментов исследовательского аппарата – SAM (Sample Analysis at Mars) – предназначен для химического анализа атмосферного воздуха. Это не первый подобный эксперимент: в предыдущий раз инструмент для измерения состава атмосферы был доставлен на Марс космическим аппаратом «Викинг» в 1976 году. Однако «Викинг» проработал на поверхности планеты лишь несколько дней, тогда как Curiosity находится там уже три марсианских года. Это обстоятельство позволило ученым отследить сезонные изменения состава атмосферы планеты.

По данным SAM, атмосфера Марса по объему на 95% состоит из углекислого газа, на 2,6% из молекулярного азота, 1,9% аргона и 0,16% молекулярного кислорода. Зимой углекислый газ замерзает и выпадает на полюсах планеты в виде снега. При этом атмосферное давление на Марсе снижается. Когда поздней весной углекислый снег сублимирует и снова попадает в атмосферу, давление восстанавливается.

Содержание азота и аргона подчиняется вполне предсказуемому годичному циклу: их доля возрастает и снижается в зависимости от количества углекислого газа в атмосфере. Планетологи ожидали, что содержание кислорода будет изменяться аналогичным образом, однако данные SAM показывают другую картину. Количество кислорода в конце весны и летом возрастает – каждый год по-разному, но в среднем на 30%. Осенью количество кислорода снижается до предсказанного уровня, а зимой опускается ниже.

Сначала ученые попытались объяснить аномалию ошибкой измерений, однако используемый для определения химического состава масс-спектрометр оказался исправен. После этого климатологи изучили возможность того, что кислород образуется в результате взаимодействия молекул углекислого газа и воды в атмосфере. Эту идею пришлось откинуть, поскольку углекислый газ распадается слишком медленно, чтобы объяснить такие быстрые колебания количества кислорода, да и воды в атмосфере Марса требуется в пять раз больше. Объяснить зимнее снижение содержания кислорода воздействием на него солнечной радиации не удалось: этот процесс тоже идет достаточно медленно.

У ученых нет гипотезы, которая бы объясняла обнаруженную аномалию, однако из-за того, что разные годы уровень кислорода повышается немного по-разному, они считают, что колебания не связаны с атмосферными процессами. Дополнительный кислород образуется в результате неизвестных химических процессов на самой планете. Источником этого элемента вполне могут быть марсианские породы (например, перхлораты), которые содержат кислород в связанной форме, но предложить процесс, отвечающий за высвобождение кислорода, ученые пока не могут.

Любопытно, что схожую с кислородом динамику в атмосфере Марса имеет метан. Его содержание в воздухе настолько мало (в среднем 0,00000004%), что зафиксировать наличие метана могут только наиболее чувствительные приборы. Однако, как показывают данные SAM, в летние месяцы количество метана в кратере Гейла возрастает на 60%. Кроме того, время от времени прибор фиксирует резкие кратковременные повышения концентрации этого газа. Происхождение марсианского метана также остается необъясненным.

На Земле оба газа – и кислород, и метан – образуются как в результате жизнедеятельности живых организмов, так и в результате химических процессов, происходящих в воде и горных породах.

Ссылка: nasa.gov

Обсудить

 

В производственном комплексе НАСА в Новом Орлеане продолжается сборка первой ракеты сверхтяжелого класса SLS, которая должна отправиться в полет в конце 2020 или, что более вероятно, в первой половине 2021 года. В октябре началась установка первого кислородно-водородного двигателя RS-25 на центральный блок ракеты. Последний четвертый двигатель был успешно установлен 6 ноября. Закончив с двигателями, специалисты занялись установкой топливной системы и электросетей.

Двигатели RS-25, также известные как SSME (Space Shutte Main Engine) были разработаны в 1970-х годах для использования на космических шаттлах. Они имеют тягу 1860/2279 кН (190/232 тс) на уровне моря/в вакууме и удельный импульс 366/452 с – это один из самых высоких показателей среди всех ракетных двигателей.

Для первого полета SLS будут использованы двигатели RS-25D, снятые с завершивших свою карьеру космических шаттлов. Если раньше RS-25D возвращались на землю вместе с челноком для повторного использования, то на SLS двигатели будут одноразовыми. Во втором полете SLS (миссия «Артемида-2») будет использовано два новых двигателя RS-25E, которые создаются в упрощенном виде с учетом отказа от многоразового использования. В 3-4 полетах продолжится использование «шаттловских» двигателей, и после исчерпания их запасов ожидается окончательный переход на RS-25E.

Согласно графику, отправка центрального блока SLS в Космический центр им. Стенниса должна состояться в декабре 2019 года. Статические огневые испытания (Green Run, «зеленая прогонка») намечены на начало 2020 года.

Ссылка: nasa.gov

Обсудить

 

23 октября и. о. директора Департамента управления и бюджета Белого дома Рассел Воут направил письмо сенатору США Ричарду Шелби с просьбой пересмотреть план финансирования НАСА в следующем году. Ранее Сенат США согласился выделить агентству рекордные 22,8 млрд долларов. Шелби представляет штат Алабама, в котором базируются производств аBoeing и других «старых» космических корпораций, а потому он традиционно лоббирует их интересы.

В начале 2019 года агентство запросило на работы, связанные с пилотируемыми полетами в дальний космос, $1,58 млрд. После прохождения законопроекта через парламент эта статья расходов выросла до $1,64 млрд, однако весной по требованию Белого дома НАСА занялось программой «Артемида», цель которой – обеспечить высадку астронавтов на Луну в 2024 году. В мае агентство сформировало новый запрос. Только программу «Артемида», помимо других работ, требуются $1,6 млрд. Из них $1 млрд предполагалось направить на разработку лунного взлетно-посадочного аппарата, $132 млн на разработку технологий и $321 млн на станцию Gateway. Всего агентство надеялось получить на «исследовательскую» пилотируемую космонавтику $2,3 млрд.

Основные опасения Белого дома связаны с финансированием лунного посадочного аппарата и орбитальной посещаемой станции Gateway. Согласно актуальной версии законопроекта, на разработку посадочного аппарата будет выделено $744 млн вместо запрошенного $1 млрд. В целом, как говорится в письме Белого дома, выделенных на исследовательскую пилотируемую программу $1,6 млрд не достаточно для того, чтобы обеспечить высадку на Луну в 2024 году.

Одновременно с этим, программы создания пилотируемого корабля «Орион» (Lockheed Martin) и сверхтяжелой ракеты SLS (Boeing) получили на $951 млн больше, чем запрашивало НАСА.

Дополнительное недовольство Белого дома (и, соответственно, НАСА) вызывает требование сената использовать SLS для запуска межпланетной исследовательской станции Europa Clipper. В связи с напряженным графиком программы «Артемида», как минимум до 2025 года свободных ракет SLS просто не будет, тогда как миссия в систему Юпитера должна быть запущена в 2023 году. При этом, если в пилотируемой программе без SLS не обойтись, то Europa Clipper вполне возможно отправить в космос на коммерческой ракете. 16 октября директор НАСА Джим Брайденстайн усомнился в самой возможности Boeing и субподрядчиков произвести более трех ракет SLS, необходимых для реализации лунной программы, до 2024 года.

Кроме того, в своем письме Воут предполагает, что цена одного пуска SLS составит около $2 млрд, и использование другой ракеты позволило бы агентству сэкономить около $1,5 млрд. Это рекордно высокая оценка. Официальных данных о стоимости одной SLS нет, а выдвигаемые чиновниками предположения сильно расходятся. Так, судя по бюджетному запросу на 2020 год, НАСА предполагает, что одна SLS будет обходиться агентству приблизительно в $1 млрд. Офис Генерального инспектора НАСА в мае этого года оценивал стоимость SLS в $876 млн, но он же в более позднем сообщении, опубликованном в августе, оценивает ее уже в $1,5 млрд.

Ссылка: spacenews.com

Обсудить

 

1 ноября американское космическое агентство завершило прием заявок на разработку лунного взлетно-посадочного аппарата по программе «Артемида». Ранее стало известно о том, что совместную заявку на разработку такого аппарата выдвинули Blue Origin, Lockheed Martin, Northrop Grumman и Draper.

5 ноября компания Boeing рассказала об альтернативном предложении, также направленном НАСА. Его отличительная особенность – возможность запуска аппарата к Луне на одной ракете-носителе SLS Block 1B.

SLS Block 1B отличается от базовой ракеты SLS Block 1, которая должна впервые отправиться в космос в 2021 году, новой верхней ступенью – EUS (Exploration Upper Stage). Грузоподъемность ракеты вырастет с 70 до 105 т при запуске на низкую орбиту Земли. Ранее НАСА решило сократить финансирование EUS, поскольку менеджеры агентства решили, что новая верхняя ступень не может быть готова раньше 2025 года, тогда как высадка на Луну намечена на конец 2024-го.

Отличительная особенность предложения Boeing заключается в том, что их посадочный аппарат не будет требовать сборки на окололунной станции Gateway и отдельного буксира для спуска на низкую орбиту Луны.

Экспедиция на поверхность спутника Земли по версии Boeing выглядит следующим образом. Первая ракета SLS запускает на орбиту Луны пилотируемый корабль «Орион» с астронавтами. Вторая ракета доставляет туда же лунный взлетно-посадочный аппарат. Он может состыковаться как напрямую с «Орионом», так и со станцией Gateway. Экипаж перейдет в лунный посадочный аппарат, слетает на нем на Луну и вернется обратно.

Таким образом, предложение Boeing дает возможность отказаться от постройки окололунной станции Gateway. Это противоречит стремлению НАСА защитить станцию, но играет на руку тем сотрудникам Белого дома, которые хотели бы сократить стоимость программы «Артемида». Предложение найдет своих сторонников и в Конгрессе, где сильны позиции лоббистов Boeing.

Ранее НАСА планировало выбрать двух подрядчиков для разработки лунных посадочных аппаратов, однако пока не очень понятно, сможет ли агентство совместить концепцию Blue Origin/Lockheed Martin/ Northrop Grumman/Draper, предназначенную для SLS Block 1, и предложение Boeing, предполагающее отказ от Block 1 в пользу Block 1B.

Космическая лента

Обсудить

 

В понедельник 4 ноября на военном полигоне White Sands в штате Нью-Мехико прошли испытания системы аварийного спасения (САС) корабля Straliner, разработанного компанией Boeing. В рамках испытаний тестовый макет корабля был установлен на специальном стенде, симулирующем верхнюю ступень ракеты «Атлас 5». Получив сигнал об аварии носителя, корабль задействовал четыре двигателя САС, чтобы за максимально короткое время отдалиться от ракеты на безопасное расстояние. Затем он выполнил мягкую посадку на землю, используя парашют и надувные подушки-амортизаторы.

Из трех пилотируемых кораблей, которые создаются сейчас в США, только у Starliner командный отсек (возвращаемый аппарат) будет многоразовым. Это достигается именно за счет использования подушек-амортизаторов. Компания SpaceX повторно использует капсулы грузовых кораблей Dragon, которые спускаются в океан, но НАСА на разрешило применять эту практику для пилотируемых полетов. Нельзя исключать, что SpaceX будет переоборудовать пилотируемые корабли Dragon 2 в грузовые для повторного запуска уже без людей.

В своем пресс-релизе Boeing объявила, что все цели испытаний были достигнуты. Анализ собранных данных займет некоторое время, но предварительно можно считать, что САС корабля Starliner справилась со своими задачами. Формально это так, но в заявлении Boeing скрывается небольшое лукавство. Всего состоявшиеся испытания преследовали восемь целей, одна из которых – проверить развертывание парашютов и подушек-амортизаторов. Как это часто бывает, цель написана таким образом, чтобы любой результат проверки засчитывался как успех. Однако в действительности испытания парашютов прошли не полностью успешно: один из трех куполов парашюта не раскрылся, что, впрочем, не помешало системе выполнить свою задачу и обеспечить мягкую посадку.

В заявлении Boeing говорится, что это происшествие не помешает первым летным испытаниям корабля, которые намечены на 17 декабря. Однако оно, несомненно, может спровоцировать перенос первого пилотируемого полета, т. к. инцидент потребует расследования, а парашютная система – доработки.

На этом фоне твиттер-аккаунт, который ведет Роскосмос от имени робота FEDOR, отличился язвительными комментарием о неудачах в американской программе создания пилотируемых кораблей. Заявление о том, что испытания САС прошли неудачно, не соответствуют действительности: как было сказано выше, все цели теста достигнуты. Роскосмос и сам не брезгует занижением целевых показателей, а потому должен понимать разницу между успешными испытаниями и неудачными с формальной точки зрения. Странно читать такое, учитывая, что все сотрудники Роскосмоса кроме одного – профессионалы, имеющие профильное образование.

Возможно, пятилетние дети могут поверить, что FEDOR ведет свой твиттер сам – как и марсоход Curiosity, и спутник Юпитера Juno, – но Роскосмос – это не госкорпорация по организации детских утренников. Все аккаунты в соцсетях, официально аффилированные с Роскосмосом, представляют его позицию, и, с политической точки зрения, высмеивание партнеров не может быть допустимым. Как недавно заявил глава Роскосмоса Дмитрий Рогозин, его должность – не техническая, а политическая. В связи с этим совершенно непонятно, откуда появляются совершенно неприемлемые с политической точки зрения посты в соцсетях, представляющих госкорпорацию.

Космическая лента

Обсудить

 

1. SpaceX выполнила 12 парашютных испытаний за неделю.

3 ноября компания SpaceX опубликовала короткое видео испытаний парашютной системы, которая создается для пилотируемого корабля Dragon 2 компанией Airborne Systems. Эта же компания участвует в создании парашютов для корабля Starliner компании Boeing и тяжелого пилотируемого корабля НАСА «Орион».

Текущая версия – уже третья для парашютов Dragon 2. В ходе испытаний второй итерации парашютной системы (Mark 2) возникали проблемы, которые вызвали у НАСА беспокойство. В результате, SpaceX приняла решение использовать на пилотируемом корабле новую версию парашютов – Mark 3. На ней применены стропы, сделанные из зейлона, более прочного аналога нейлона.

В ходе последнего, 15 по счету сброса, была проверена эффективность работы парашютов при отказе одного из четырех куполов. Испытания прошли 31 октября и стали для парашютов версии Mark 3 первым сбросом, в котором купола работали одновременно. До этого в течение недели было проведено 12 испытаний, в ходе которых отрабатывалась работа куполов по отдельности.

Как сообщает SpaceNews, испытания новых парашютов начались не очень гладко. Первые два сброса парашютов закончились неудачей. В ходе этих сбросов проверялась работа парашютов с превышением максимальной нагрузки. После первых неудач в конструкцию парашютов внесли изменения, и дальнейшие испытания проходили успешно.

2. В понедельник состоятся испытания системы аварийного спасения Starliner.

Компания Boeing запланировала испытания системы аварийного спасения корабля Starliner (CST-100) на понедельник 4 ноября. Тест состоится на военном полигоне White Sands Missile Range в штате Нью-Мексико в 17:00 мск («окно» для старта продлится три часа). Цель испытаний – продемонстрировать способность корабля быстро отдалиться от терпящей аварию ракеты и обеспечить мягкую посадку возвращаемого аппарата вместе с экипажем.

Испытательный макет корабля Starliner был посещен на специально построенный тестовый стенд. Получив команду аварии, он на 5,1 секунды включит четыре двигателя системы аварийного спасения. Суммарная тяга этих двигателей – около 73 тс. Одновременно должны заработать орбитальные двигатели управления ориентацией, задача которых – обеспечить корректную ориентацию корабля в пространстве для раскрытия парашютов. Эти двигатели проработают 10,1 с.

Отделение крышки парашютного отсека и лобового теплозащитного экрана должно состояться после прохождения максимальной высоты на 19 секунде полета. Затем на 21,2 с будут выпущены тормозные парашюты, за ними на 26,4 с – основные парашюты.

Воздушные подушки, смягчающие удар о землю, будут активированы на 61 секунде полета. Ожидается, что максимальная высота подъема корабля составит 1,37 км, он совершит посадку в 2,1 км от стенда. Весь полет займет 95 секунд.

Космическая лента

Обсудить

Наземные российские станции связи способны обеспечивать связь с космическими аппаратами на орбите Земли, только когда они находятся над горизонтом видимости, т. е. приблизительно над территорией России. Чем ниже находится космический аппарат, тем быстрее он пролетает над территорией России и тем короче возможные сеансы связи с ним. Запущенный в ноябре 2011 года исследовательский аппарат «Фобос-Грунт» не смог покинуть опорную 180-километровую орбиту Земли. Он пролетал в зоне видимости станции на Байконуре за 10-15 минут, и этого времени для установки связи с ним не хватало.

Для решения этой проблемы в СССР существовал «космический флот» – корабли, которые обеспечивали дополнительную связь с космосом из океанов.

С 2011 года в России создается спутниковая система ретрансляции «Луч», задача которой – обеспечение связи между приемно-передающими станциями на Земле и объектами на орбите высотой до 2000 км. Первый спутник «Луч-5А» был запущен в декабре 2011 года. В 2012 и 2014 годах были запущены еще два спутника – «Луч-5Б» и «Луч-5В».

В последующие несколько лет система ретрансляции «Луч» никак не использовалась. Оборудование для связи через спутники-ретрансляторы в S-диапазоне (обеспечивает низкую скорость передачи данных) было доставлено на МКС в 2014 году. Позднее оно появилось на кораблях «Прогресс-МС» (первый запуск 21 декабря 2015 года) и на пилотируемых «Союз-МС» (используются с 2016 года). В 2015 году Роскосмос объявил о начале опытной эксплуатации системы «Луч».

Сейчас для передачи больших объемов данных с российского сегмента Международной космической станции используются средства связи американского сегмента. Доставка на космическую станцию оборудования, необходимого для связи через «Лучи» в Ku-диапазоне, откладывались в течение многих лет. В 2017 году глава ИСС им. Решетнева (предприятия, разработавшего и изготовившего аппараты «Луч-5») Николай Тестоедов сказал, что оборудование, которое позволит передавать на Землю со станции большие объемы данных, планируется подключить в течение года. В действительности это произошло позже. Приемный модуль и устройство управления были переданы в РКК «Энергия» осенью 2017 года. Модуль был отправлен на станцию на корабле «Прогресс МС-07» в октябре. В феврале 2018 года космонавты Александр Мисуркин и Антон Шкаплеров вышли в открытый космос для установки на внешней поверхности МКС приемного модуля с остронаправленной антенной, необходимого для связи через «Лучи». Любопытно, что новая антенна пришла на смену другому блоку, который был запущен в космос вместе с самим модулем «Звезда». При постройке модуля предполагалось, что спутники «Луч» будут запущены в начале 2000-х. Однако блок связи провел в космосе 17 лет без дела и оказался слишком старым для работы со спутниками «Луч-5» новой конструкции.

Доставить на космическую станцию систему управления связью Роскосмос обещал весной 2018 года. Вероятно, в течение 2018 и 2019 года проводилось тестирование системы, но об этом Роскосмос не сообщал.

Наконец, сегодня РИА Новости сообщило, что запуск в эксплуатацию высокоскоростной связи на российском сегменте МКС запланирован на 2020 год. «Все необходимое оборудование на МКС доставлено, смонтировано, проведены автономные испытания. Сейчас в соответствии с программой идет отработка функционирования ретрансляционного канала», – заявил заместитель гендиректора компании «Гонец» Олег Химочко. Скорость передачи данных при связи через «Лучи» составит 105 мбит/с, что позволит передавать со станции фотографии, видео и научную информацию.

Таким образом, если планы Роскосмоса не подвергнутся очередному пересмотру, от запуска первого спутника-ретранслятора доя начала эксплуатации высокоскоростной линии связи на МКС пройдет 8-9 лет. Для сравнения, плановый срок активного существования спутника «Луч-5А» составляет 10 лет.

Космическая лента

Обсудить