Новозеландско-американская компания RocketLab возобновила подготовку к летным испытаниям сверхлегкой ракеты «Электрон» (Electron). «Электрон» – двухступенчатая ракета-носитель сверхлегкого класса, использующая кислородно-керосиновые двигатели «Резерфорд» (Rutherford) собственной разработки. Она будет способна выводить 150 кг полезного груза на солнечно-синхронную орбиту высотой 500 км или до 225 кг на низкую опорную орбиту. Диаметр ракеты составляет 1,2 м, высота – 17 м. Стартовая площадка расположена на полуострове Махиа на юго-восточном побережье Северного острова Новой Зеландии. Это место было выбрано ради возможности запуска в широком диапазоне орбит, включая солнечно-синхронные, с наклонениями от 39 до 98 градусов.

Заявленная коммерческая стоимость одной миссии ракеты «Электрон» составляет $4,9 млн. После переноса головного офиса в США компания Rocket Lab получила венчурный контракт от НАСА на $6,9 млн, а суммарные инвестиции в нее в настоящий момент составляют около $150 млн.

Первая попытка пуска ракеты 25 мая 2017 года окончилась неудачно. У ракеты возникли проблемы с управлением ориентацией. Получение телеметрической информации от нее прекратилось на высоте 224 км.

Второй пуск «Электрона» откладывался неоднократно с ноября, прежде чем ракета была установлена на стартовом столе в декабре 2017 года. Испытания переносились ежедневно до приближения праздников, после чего были перенесены на январь. Как следует из нового заявления компании, попытки произвести пуск «Электрона» возобновятся в субботу 20 января. Стартовое окно будет активно с 4:30 мск до 8:30 мск каждый день до 28 января.

Полезной нагрузкой в этой миссии станут три «кубсата». Если испытания пройдут успешно, то в конце первого квартала 2018 года «Электрон» будет использован для запуска лунной станции MX-1E от компании Moon Express. Эта миссия разрабатывается в рамках конкурса Google Lunar X-PRIZE. MX-1E должен будет доставить на Луну небольшой луноход и несколько приборов от коммерческих заказчиков Moon Express.

Ссылка: spacenews.com

Обсудить

Ученые давно перестали считать Марс сухой планетой. Присутствие на нем водяного льда было подтверждено в прошлом десятилетии. Дальнейшие исследования показали, что запасы льда под поверхностью Марса достаточно велики – по некоторым подсчетам, растопленная вода могла бы покрыть всю планету глобальным океаном глубиной в 1-2 м. Но у ученых остается два вопроса, важных с точки зрения возможности использования этого льда людьми. Во-первых, на какой глубине находится лед? Во-вторых – в какой форме? Лед может залегать слоями, либо быть смешан с породами, как застывшие грунтовые воды, либо частицы воды могут находиться в связанном состоянии внутри молекул горных пород.

Согласно новому исследованию, которое было опубликовано в журнале Science, ученым удалось найти восемь мест обнажения слов льда на крутых эродированных склонах в различных регионах Марса. Сделать это удалось благодаря снимкам камеры высокого разрешения HiRISE, установленной на научном спутнике Марса MRO. Данные подтвердили спектрометр CRISM и термоэмиссионная камера THEMIS зонда Mars Odyssey. Угол наклона изученных восьми склонов превышает 55 градусов. Они расположены в северном и южном полушариях Марса выше 55-58 градусов северной и южной широты.

По мнению планетологов, отложения сформировались в далеком прошлом из спрессованного снега. Он образовал достаточно чистые и мощные слои льда, отделенные от остальных пород слоями сцементированных льдом пород толщиной 1-2 м. Полученные стратиграфические данные можно будет использовать для изучения истории геологического развития Марса, а сам лед будет легко доступен для использования людьми.

Первоначально существование льда на Марсе предполагалось благодаря исследованиям американского спутника Mars Odyssey, спектрометры которого обнаружили следы льда в молодых кратерах. Эти данные согласовались с радарными измерениями, сделанными европейским научным спутником Mars Express. В 2008 году посадочная станция НАСА Phoenix подтвердила существование водяного льда на 68 градусах с. ш.

Планетологи пока не знают, что инициировало появление провалов, которые они изучают. Но они предполагают, что рост провалов продолжается благодаря сублимации обнаженного водяного льда в условиях разряженной марсианской атмосферы. В некоторых из них мощность слоя льда превышает 100 м. Ученые уверены, что обнаруженное ими вещество является водяным льдом, и речь не идет о тонком слое инея, покрывающем поверхность.

Ранее подповерхностные слои льда на Марсе были картированы при помощи радара на спутнике MRO. Радарные данные свидетельствуют о том, что лед приближается к поверхности менее чем на 10 м, однако более точно определить глубину залегания не позволяет разрешение радара. Новое исследование склонов вместе с данными из ударных кратеров позволяет говорить, что лед начинается на глубине 1-2 м от поверхности планеты.

Водяной лед, выраженный в отдельных слоях вблизи поверхности планеты – ценный ресурс, который, несомненно, упростит освоение планеты. Его можно будет использовать для производства воды, воздуха и ракетного топлива. Даже если первые полеты к Марсу не будут полагаться на использование местных ресурсов, доступный лед позволит значительно ускорить создание постоянно обитаемой станции на этой планете.

Недавнее исследование, основанное на данных европейского спутника TGO миссии Exomars-2016, свидетельствует, что в ходе одного годового полета к Марсу и обратно космонавт получит дозу облучения галактическими космическими лучами, соответствующую 60% от максимально допустимой. Эти данные согласуются с исследованием НАСА, для которого были использованы данные миссии MSL/Curiosity. Американское исследование утверждало, что за 12 месяцев пути и 9 месяцев на поверхности Марса астронавт получит предельно допустимую дозу облучения. Следует отметить, что оба исследования не предполагают использование каких-то мер радиационной защиты. Интенсивность галактических космических лучей (ГКЛ) также зависит от активности Солнца, которая меняется по 12-летнм циклам: чем активнее Солнце, тем эффективнее солнечный ветер задерживает ГКЛ. На поверхности Марса, по данным Curiosity, люди будут получать дозу облучения примерно такую же, как на МКС, т.е. в 3-5 раз ниже, чем в открытом космосе. Космические лучи там с одной стороны блокируются самой планетой, а с другой задерживаются ее слабой атмосферой.

Ссылка: sciencemag.org

Обсудить

Компания SpaceX вплотную приблизилась к началу полетов новой сверхтяжелой (или просто тяжелой – смотря как подходить к классификации) ракеты Falcon Heavy. Ее появление станет вторым глобальным достижением компании. В прошлом году доля SpaceX на рынке коммерческих запусков достигла 45%. Таким образом, она не просто заняла значимую долю, а стала крупнейшим оператором запусков в мире, оттеснив французскую Arianespace и американскую (принадлежит московскому Центру им. Хруничева) ILS. Falcon Heavy же станет самой тяжелой ракетой из существующих сейчас в мире.

Согласно официальному сайту SpaceX, ракета-носитель Falcon Heavy будет способна выводить до 63,8 т на низкую орбиту Земли и до 26,7 т на геопереходную орбиту. Однако одноразовую версию мы вряд ли когда-нибудь увидим в полете, а многоразовом варианте она будет выводить только 8 т на ГПО. Основные потери при этом возникают при возвращении центрального блока ракеты. Кроме того, в первом пуске, по словам основателя компании SpaceX Илона Маска, двигатели первой ступени будут дросселированы до 92%. Не нужно также забывать, что характеристики на сайте приведены для финальной версии ракеты на основе модулей 1-2 ступеней в модификации Block 5. Сейчас SpaceX использует модификацию Block 4, а два боковых модуля Falcon Heavy используются повторно с 2016 года (Block 3). Соответственно, характеристики ракеты в первом пуске будет ниже, чем указано на сайте. Однако это не помешает ей стать самой тяжелой из существующих. Ближайшие конкуренты (американская Delta IV Heavy, китайская CZ-5) выводят менее 30 т на низкую орбиту Земли.

Ранее центральный и боковые модули по отдельности прошли статические огневые испытания на полигоне SpaceX в техасском Макгрегоре. Основное беспокойство инженеров вызывает одновременная работа трех модулей: полноценно протестировать ее на Земле не представляется возможным, и некоторые неучтенные нагрузки могут привести к аварии. Именно поэтому огневые испытания на стартовой площадке будут иметь большое значение.

Вывоз ракеты и установка на стартовый стол площадки 39А на мысе Канаверал состоялись 8 января. Следующим шагом в подготовке к запуску станет примерка и заправка. Если она пройдет успешно, то огневые испытания могут состояться уже сегодня после 21:00 мск. В отличие от Falcon 9, прожиг двигателей будет длиться не 3-7, а 12 секунд. Тест должен подтвердить не только устойчивую одновременную работу всех 27 двигателей. Проверке также подвергаются все электрические соединения и шины для обмена данными, а также системы стартового комплекса, в т. ч. заправочные. Чтобы избежать возможного повреждения крепления при резком напряжении, запуск двигателей будет производиться не одновременно, а попарно с небольшой задержкой, как это делалось у космических шаттлов.

В зависимости от того, какие сложности возникнут или не возникнут при подготовке, сами огневые испытания могут сдвигаться как минимум до конца недели. После прожига ракета будет снята со стартового стола и возвращена в ангар.

Если анализ данных подтвердит корректную работу всех систем, повторный прожиг проводиться не будет, и пуск Falcon Heavy состоится в конце месяца (не ранее 25 января). В противном случае он может быть перенесен на февраль, поскольку на 30 января назначен запуск люксембургского коммуникационного спутника SES-16 на ракете-носителе Falcon 9. Он будет проводиться со стартового стола №40, но SpaceX пока не сформировала две отдельные команды для одновременных запусков.

Президент компании SpaceX Гвен Шотвелл в специальном заявлении 9 января подчеркнула, что миссия SES-16 не будет перенесена в связи неудачным запуском военного спутника Zuma на прошлой неделе. Это дает косвенное, но веское подтверждение того, что вторая ступень Falcon 9 при запуске Zuma отработала полностью штатно. Но точно мы это будем это знать, если в будущем Минобороны США продолжит сотрудничество со SpaceX.

Полезной нагрузкой Falcon Heavy в первом полете станет автомобиль Tesla Roadster Илона Маска. Он сыграет роль оригинального массового макета, который вместе с третьей ступенью ракеты будет выведен на межпланетную траекторию. Roadster окажется на орбите Солнца и приблизительно через два года пролетит в относительной близости Марса.

Космическая лента

Обсудить

Американская компания Blue Origin разрабатывает кислородно-метановый двигатель BE-4 с 2011 года. Он будет использоваться на первой ступени тяжелой ракеты New Glenn, первый пуск которой должен состояться в 2020 году. Также ожидается, что BE-4 в качестве двигателя первой ступени для ракеты Vulcan выберет компания ULA.

BE-4 – двигатель замкнутого цикла. Он имеет проектную тягу 250 т и предназначен для многоразового использования. Blue Origin намерена использовать первую ступень ракеты New Glenn до 100 раз. Для сравнения, первая ступень Falcon 9 компании SpaceX будет использоваться 10 раз, а метановый двигатель Raptor имеет тягу 170 т.

Первое видео испытаний BE-4, опубликованное в прошлом году, длилось 3 секунды, а тяга двигателя составила 50% от номинальной. Вчера Blue Origin опубликовала новое видео, свидетельствующее о достигнутом прогрессе. На нем прожиг двигателя длится около 10 секунд. В ходе испытания BE-4 дросселируется до различных показателей тяги. Как отмечает Blue Origin в своем комментарии, инженерам удалось достичь и превысить целевое значение удельного импульса двигателя.

Обсудить

Пуск ракеты Falcon 9 с секретным спутником Zuma 8 января 2018 г. мог завершиться неудачей. Хотя официального заявления на эту тему не было, многочисленные источники в различных СМИ подтверждают, что связь со спутником после выведения установить не удалось. Вероятно, он не отделился от второй ступени и вместе с ней сошел с орбиты.

Космический аппарат Zuma разрабатывался компанией Northrop Grumman по заказу ВВС США в обстановке строгой секретности. Впервые о нем стало известно широкой публике в середине октября 2017 года – всего за месяц до предполагаемого запуска. Первоначально предполагалось, что спутник отправится на орбиту в ноябре. Позднее запуск был перенесен из-за обнаруженных в ходе предстартовой подготовки проблем с головным обтекателем ракеты.

Нет никакой информации о целях и задачах этого космического аппарата. Известно, что он выводился на низкую орбиту Земли, и масса аппарата не слишком велика. В противном случае для спасения первой ступени ракеты использовалась бы плавучая платформа. По данным издания Wall Street Journal, аппарат мог стоить миллиарды долларов. Это необычно много по любым меркам. Обычно даже тяжелые геостационарные спутники связи стоят несколько сотен миллионов долларов. Сравнимую с ними стоимость имеет научно-исследовательская миссия InSight, которую НАСА в этом году запустит на Марс.

Пуск Falcon 9 состоялся 8 января в 4:00 мск. Первая ступень отработала штатно и совершила мягкую посадку на посадочную площадку на мысе Канаверал. О работе второй ступени достоверной информации нет. Представитель SpaceX заявил, что, согласно имеющимся у компании данным, обе ступени ракеты отработали штатно. Но результаты миссии и SpaceX, и Northrop Grumman отказываются комментировать, ссылаясь на ее секретность.

По неподтвержденным данным, неполадки возникли в системе отделения космического аппарата от второй ступени ракеты. Предположительно, в данной миссии использовалась не серийный адаптер Falcon 9, а система, специально разработанная для спутника в Northrop Grumman.

Согласно принятой классификации, система разделения является частью ракеты-носителя, а не космической головной части. Авария этой системы означает неудачу на этапе выведения и засчитывается в статистику Falcon 9. С другой стороны, данный случай не является показательным для надежности Falcon 9, поскольку, по сути, авария случилась с уникальной модификацией ракеты, которая не будет использоваться. Но SpaceX объединяет полеты всех модификаций Falcon 9 в общую статистику. Сложившаяся ситуация хорошо демонстрирует несовершенство существующей модели расчета статистики надежности ракет. Еще один показательный случай – авария Falcon 9 на стартовой площадке 1 сентября 2016 года. Поскольку ракета взорвалась во время огневых испытаний за несколько дней до запуска, это событие не вошло в статистику ее полетов, хотя оно объективно свидетельствовало о конструктивных проблемах Falcon 9.

На фото – предполагаемый сброс топлива второй ступенью Falcon 9. Сброс топлива является штатной операцией, выполняемой при управляемом сходе с орбиты.

Ссылка: www.wsj.com

Обсудить

Разработка двух новых частных пилотируемых кораблей в США находится на заключительном этапе. Корабли Boeing Starliner и SpaceX Dragon 2 создаются частными компаниями по заказу НАСА с 2011 года. Американское космическое агентство курирует и контролирует эту работу по программе Commercial Crew Development.

Согласно актуальной версии расписания CCDev, оба корабля должны совершить короткие испытательные полеты в космос с астронавтами на борту в конце 2018 года, а со следующего года они должны начать регулярные полеты на МКС для обеспечения ротации экипажа станции. В связи с этим Роскосмос сократил заказ пилотируемых кораблей «Союз МС» с четырех в 2018 году до двух в 2019.

Согласно отчеты НАСА от 4 января, в этом году Boeing продолжит сборку трех командных отсеков кораблей Starliner на специально построенном для этих целей производстве во Флориде. Ранее созданный конструкторский макет корабля будет использован для различных испытаний, включая тесты системы обеспечения температурного режима, системы жизнеобеспечения и прожиги двигателей, а также вакуумные и электромагнитные испытания. Отдельный набор испытаний планируется для спасательного скафандра, который будет применяться на кораблях компании Boeing. Его ждет серия тестов и симуляций, необходимых для сертификации в НАСА.

У SpaceX в производстве находится сразу шесть кораблей Dragon 2. Квалификационный конструкторский макет с прошлого года проходит интенсивные испытания, которые должны завершиться в первой половине 2018 года. В течение всего года продолжатся испытания систем обеспечения жизнедеятельности и контроля температурной среды. В командном отсеке корабля, который будет использован для первой беспилотной демонстрационной миссии, смонтирована и подключена бортовая авионика. Завершена интеграция герметичного отсека со служебной секцией корабля. Скафандр SpaceX, как и у компании-конкурента, должен будет пройти серию сертификационных испытаний. Сейчас в производстве находится скафандры для четырех первых астронавтов НАСА, которые полетят в космос на корабле Dragon 2. Скафандры SpaceX не являются универсальными и будут создаваться для каждого астронавта отдельно.

Формально первые беспилотные полеты Dragon 2 и Starliner должны состояться во 2 и 3 квартале года, а первые пилотируемые полеты, соответственно, в 3 и 4 квартале. К сожалению, расписание обслуживания Международной космической станции свидетельствует о том, что беспилотные полеты двух кораблей будут перенесены на вторую половину года, а шансы увидеть пилотируемый полет хотя бы одного из них в этом году остаются, но не очень велики. В связи с этим, чтобы не оставить МКС без экипажа, РКК «Энергия» вынуждена форсировать производство корабля «Союз МС-14», запуск которого ранее планировался в 2020 году. Теперь он перенесен на сентябрь 2019 года. НАСА не подписало контракт с Роскосмосом на доставку астронавтов на МКС в 2019 году, но американский астронавт получит место на этом корабле в рамках сделки по урегулированию долга РКК «Энергия» перед Boeing. До этого на корабле «Союз МС-12» в марте 2019 года к МКС отправится один астронавт НАСА, а на «Союз МС-13» места получат астронавт НАСА и астронавт ЕКА (по квоте НАСА).

Космическая лента

Обсудить

Хорошие новости. После двух скучных лет космонавтика начинает выходить из спячки. 2018 год в космонавтике должен стать богатым на события. Нас ждет много нового и в пилотируемой, и в научно-исследовательской программах.

Январь станет месяцем новых ракет. В самом начале следующего года новозеландско-американская компания RocketLab планирует произвести пуск своей ракеты сверхлегкого класса Electron, отложенный с декабря. Первый пуск весной 2017 года окончился неудачей. Вторе испытание имеет удвоенное значение: в случае успеха оно откроет дорогу для запуска миссии на Луну уже этой весной.

15 января или во второй половине месяца компания SpaceX планирует осуществить пуск ракеты Falcon Heavy, которая должна стать самой тяжелой ракетой-носителем на ближайшие два года – до начала полетов американской сверхтяжелой SLS. Первая ступень Falcon Heavy в первом пуске будет дросселирована до 92% тяги. В качестве полезной нагрузки в этом запуске будет использован автомобиль Tesla Roadster. Он не выйдет на орбиту Марса, как обещал Илон Маск в своем первом твите – для этого автомобилю пришлось бы выдать тормозной импульс при подлете к планете, а реактивные двигатели в комплектацию Tesla Roadster пока не входят. Автомобиль, закрепленный на верхней ступени ракеты Falcon Heavy, окажется на гелиоцентрической орбите, и примерно через два года после запуска пролетит вблизи Марса. Конечно, к тому времени он будет не в состоянии передавать изображения на Землю.

Данная миссия – редкий случай применения космической техники в условиях, для которых она не проектировалась. В программах вроде KSP игроки любят устраивать подобные эксперименты, но сейчас мы сможем пронаблюдать вживую, как третья ступень Falcon Heavy (она же вторая ступень Falcon 9) будет вести себя в межпланетном полете: на сколько дней ей хватит заряда аккумуляторов? Или она замерзнет раньше, чем потеряет энергию? Или прервется связь, поскольку ее антенны предназначены для связи с центром управления только с орбиты Земли? Как отмечал основатель SpaceX Илон Маск, зрелище нас ждет впечатляющее, независимо от успеха миссии.

На март официально запланирован старт индийской исследовательской миссии «Чандраян-2», целью которой является доставка на южный полюс Луны посадочной платформы и маленького лунохода. И если испытания ракеты Electron в январе пройдут успешно, то в конце марта на спутник Земли отправится еще один луноход от американской компании Moon Express, участника конкурса Google Lunar X-Prize. У Moon Express большие планы на свою посадочную платформу. Ожидается, что в дальнейшем она будет использоваться для доставки на Луну частных экспериментов и полезных нагрузок НАСА.

Апрель опять станет разгрузочным месяцем. Формально на него все еще запланирован беспилотный запуск нового корабля Dragon 2 компании SpaceX, но в расписании полетов МКС он уже перенесен на III квартал. Помимо этого SpaceX, согласно контракту с Пентагоном, должна будет завершить весной разработку кислородно-метанового двигателя. Можно ожидать, что нам покажут Raptor или хотя бы его уменьшенный прототип в металле.

5 мая ракета Altas V компании ULA запустит в космос исследовательскую миссию InSight. Изначально она должна была отправиться к Марсу еще в 2016 году. Этому помешала выявленная на финальных испытаниях негерметичность в одном из контейнеров для датчиков прибора SEIS. Сейсмометр для изучения внутренней структуры SEIS является одним из двух основных инструментов InSight. Он состоит из очень чувствительных датчиков, способных фиксировать сейсмические волны в различных диапазонах. Прибор предназначен для обнаружения внутренних источников колебаний и для определения воздействия приливных сил Фобоса. В конце 2015 года устранить проблему ,a href="http://kosmolenta.com/index.php/781-2015-12-23-insight-2018">не удалось, и запуск был перенесен на 2018 год.

В мае 2018 года начнется пусковая программа компании OneWeb, которая планирует запустить на низкую орбиту Земли около 2,5 тысяч спутников, которые будут предоставлять доступ в интернет по всей планете. На первом этапе ракета-носитель «Союз-СТ» компании Arianespace выведет в космос 32 спутника. Осенью пусковую компанию продолжат «Союзы-2.1б» на Байконуре. Помимо «Союзов» OneWeb планирует использовать ракету New Glenn компании Blue Origin и LauncherOne от Virgin Galactic.

В июне 2018 года Китай собирался запустить орбитальный модуль лунной миссии «Чанъ’э-4» (Chang'e 4). Цель миссии – первая в истории посадка космического аппарата на задней стороне Луны. Орбитальный модуль должен будет обеспечить связь посадочной платформы, запустить которую предполагалось отдельно в конце года. К сожалению, авария ракеты-носителя CZ-5 летом прошлого года негативно повлияла на китайскую лунную программу. Миссия «Чанъ’э-5», которая должна была доставить образец грунта с Луны еще в конце 2017 года, была перенесена на 2019 год. Для «Чанъ’э-4» должна быть использована другая ракета. Однако в сентябре на Астронавтическом конгрессе в Аделаиде генеральный секретарь Китайской космической администрации Тянь Юйлун признал, что коррекции подвергнется вся лунная программа, включая миссию «Чанъ’э-4». Точный срок ее запуска до сих пор неизвестен. В лучше случае она все-таки состоится в этом году, в худшем – только после «Чанъ’э-5» в 2019.

Американский научный зонд Parker Solar Probe должен быть запущен 31 июля на тяжелой ракете Delta IV Heavy. Этот довольно любопытный аппарат будет изучать солнечную корону с орбиты высотой 8,5 радиусов Солнца (5,9 млн км). В конце сентября он выполнит первый (из семи!) гравитационный маневр у Венеры. Зонд оборудован телескопом с камерой высокого разрешения, поэтому, вероятно, он сможет порадовать нас снимками этой планеты.

В третьем квартале могут состояться два значимых события в пилотируемой космонавтике – первые беспилотные полеты новых американских кораблей Boeing Starliner и SpaceX Dragon 2. Первоначально НАСА надеялось, что их эксплуатация начнется в конце 2015 года, однако программа столкнулась со множеством переносов и задержек. Некоторые из них были связаны с недофинансированием, другие – с техническими проблемами.

В сентябре 2018 межпланетная станция OSIRIS-REx пребудет к астероиду Бенну. Она должна будет доставить на Землю образец грунта с этого космического тела, но в этом году будет только изучать поверхность астероида и искать подходящее место для посадки. Отбор пробы запланирован лишь на 2020 год. Очень подробно об этой миссии можно прочитать здесь.

На октябрь запланирован запуск неоднократно откладывавшейся европейско-японской миссии по исследованию Меркурия BepiColombo. Она будет состоять из двух аппаратов, которые разделятся после прибытия на орбиту Меркурия. Один займется изучением поверхности планеты, другой – изучением ее магнитного поля.

Корабль «Союз МС» впервые может долететь до МКС по сверхкороткой двухвитковой схеме осенью 2018 года. Первоначально схему предполагалось испытать на грузовом «Прогрессе МС-07» в октябре 2017 года. Но запуск был перенесен на сутки из-за неисправности ракеты, и баллистические условия оказались неподходящими для короткого полета. Теперь испытания перенесены на февраль 2018 года и корабль «Прогресс МС-08». А пилотируемые корабли «Союз МС-08» и «Союз МС-09» в марте и июне полетят к МКС по старой двухсуточной схеме.

Запущенный весной американский аппарат InSight прибудет к Марсу в ноябре. Нас ждет увлекательное шоу с посадкой на планету. Поскольку масса аппарата не очень велика, InSight использует консервативную парашютную схему посадки, которую НАСА применяло до марсохода Curiosity.

В конце года компания Blue Origin надеется выполнить первый полет суборбитальной ракетной системы New Shepard с людьми на борту. Это будет последний важный этап перед началом ее коммерческой эксплуатации.

Декабрь будет очень богат на события. Японская «Хаябуса-2» прибудет к астероиду (162173) Рюгу (1999 JU3). Если все сложится удачно, то в этом году Рюгу станет вторым малым космическим телом после Бенну, которое мы увидим в высоком разрешении. Как и OSIRIS-REx, «Хаябуса-2» должна будет доставить на Землю образец пород с поверхности астероида.

Ожидается, что как минимум один американский пилотируемый корабль совершит полет к МКС с астронавтами на борту до конца 2018 года. Пока нельзя сказать наверняка, кто победит в гонке – SpaceX или Boeing. Нельзя также гарантировать, что пилотируемый полет состоится до конца года.

На 20 декабря запланирован запуск к Международной космической станции легендарного Многофункционального лабораторного модуля «Наука». Гарантий Роскосмос не дает, но настроен он весьма серьезно. Ремонт топливных баков модуля продолжался в декабре 2017 года, и о каких-то проблемах в этом процессе не сообщалось. Чтобы успеть к декабрьскому запуску, на космодром МЛМ-У должен быть отправлен в марте 2018 года.

Наконец, в о второй половине 2018 года исследовательская станция «Новые горизонты» (New Horizons), находящаяся в поясе Койпера, начнет сближение с объектом (486958) 2014 MU69. Минимальное расстояния до него будет достигнуто 1 января 2019 года, но уже в конце декабря мы сможем увидеть качественные снимки этого объекта – третьего по счету малого объекта, сфотографированного с близкого расстояния в течение одного года. Более того, 2014 MU69 станет самым удаленным объектом в Солнечной системе, который посетит созданный людьми космический аппарат.

2019 год обещает быть не менее интересным. Начнется он с упомянутого выше пролета «Новых горизонтов» около объекта в поясе Койпера. Затем начнутся регулярные полеты американских кораблей к МКС и достройка российского сегмента МКС – узловой модуль должен отправиться к станции вскоре после МЛМ-У. Весной, если не будет новых переносов, в точку Лагранжа системы Земля-Солнце отправится космическая обсерватория «Спектр-РГ». SpaceX покажет первые результаты разработки сверхтяжелого монстра BFR и, возможно, начнет подготовку к туристической миссии по облету Луны. Если нам очень повезет, то в конце 2019 года состоится первая миссия сверхтяжелой ракеты SLS и корабля «Орион» к Луне, на поверхность спутника Земли отправится российская автоматическая станция «Луна-25». Кроме того, в 2019 году штурм Луны возобновит Китай.

И дальше будет только веселее.

Космическая лента

Обсудить